A1 Journal article – refereed

Colonic Mucosal Microbiota and Association of Bacterial Taxa with the Expression of Host Antimicrobial Peptides in Pediatric Ulcerative Colitis




List of Authors: Jonna Jalanka, Jing Cheng, Kaisa Hiippala, Jarmo Ritari, Jarkko Salojärvi, Tarja Ruuska, Marko Kalliomäki, Reetta Satokari

Publisher: MDPI

Publication year: 2020

Journal: International Journal of Molecular Sciences

Journal name in source: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES

Journal acronym: INT J MOL SCI

Volume number: 21

Issue number: 17

Number of pages: 13

eISSN: 1422-0067

DOI: http://dx.doi.org/10.3390/ijms21176044


Abstract
Inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohn's disease (CD), are chronic debilitating disorders of unknown etiology. Over 200 genetic risk loci are associated with IBD, highlighting a key role for immunological and epithelial barrier functions. Environmental factors account for the growing incidence of IBD, and microbiota are considered as an important contributor. Microbiota dysbiosis can lead to a loss of tolerogenic immune effects and initiate or exacerbate inflammation. We aimed to study colonic mucosal microbiota and the expression of selected host genes in pediatric UC. We used high-throughput 16S rDNA sequencing to profile microbiota in colonic biopsies of pediatric UC patients (n= 26) and non-IBD controls (n= 27). The expression of 13 genes, including five for antimicrobial peptides, in parallel biopsies was assessed with qRT-PCR. The composition of microbiota between UC and non-IBD differed significantly (PCoA,p= 0.001). UC children had a decrease in Bacteroidetes and an increase in several family-level taxa including Peptostreptococcaceae and Enterobacteriaceae, which correlated negatively with the expression of antimicrobial peptides REG3G and DEFB1, respectively. Enterobacteriaceae correlated positively with the expression siderophore binding protein LCN2 and Betaproteobacteria negatively with DEFB4A expression. The results indicate that reciprocal interaction of epithelial microbiota and defense mechanisms play a role in UC.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Last updated on 2021-24-06 at 11:46