YBCO-based non-volatile ReRAM tested in Low Earth Orbit




Acha C, Barella M, Sanca GA, Marlasca FG, Huhtinen H, Paturi P, Levy P, Golmar F

PublisherSPRINGER

2020

Journal of Materials Science: Materials in Electronics

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS

J MATER SCI-MATER EL

31

19

16389

16397

9

0957-4522

1573-482X

DOIhttps://doi.org/10.1007/s10854-020-04190-0(external)

https://research.utu.fi/converis/portal/detail/Publication/50158798(external)



An YBCO-based test structure corresponding to the family of ReRAM devices associated with the valence change mechanism is presented. We have characterized its electrical response previous to its lift-off to a Low Earth Orbit (LEO) using standard electronics and also with the dedicated LabOSat-01 controller. Similar results were obtained in both cases. After about 200 days at LEO on board a small satellite, electrical test started on the memory device using the LabOSat-01 controller. We discuss the results of the first 150 tests, performed along a 433-day time interval in space. The memory device remained operational despite the hostile conditions that involved launching, lift-off vibrations, permanent thermal cycling, and exposure to ionizing radiation, with doses 3 orders of magnitude greater than the usual ones on Earth. The device showed resistive switching and IV characteristics similar to those measured on Earth, although with changes that follow a smooth drift in time. A detailed study of the electrical transport mechanisms, based on previous models that indicate the existence of various conducting mechanisms through the metal-YBCO interface showed that the observed drift can be associated with a local temperature drift at the LabOSat controller, with no clear evidence that allows determining changes in the underlying microscopic factors. These results show the reliability of complex-oxide non-volatile ReRAM-based devices in order to operate under all the hostile conditions encountered in space-borne applications.

Last updated on 2024-26-11 at 11:24