A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Step-constrained self-avoiding walks on finite grids
Tekijät: Belbachir, Hacène; Major, László; Németh, László; Szalay, László
Kustantaja: Elsevier BV
Julkaisuvuosi: 2026
Lehti:: Journal of Combinatorial Theory, Series A
Artikkelin numero: 106104
Vuosikerta: 218
ISSN: 0097-3165
eISSN: 1096-0899
DOI: https://doi.org/10.1016/j.jcta.2025.106104
Verkko-osoite: https://doi.org/10.1016/j.jcta.2025.106104
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/500389381
The study of self-avoiding walks (SAWs) on integer lattices has been an area of active research for several decades. In this paper, we investigate the number of SAWs between two diagonally opposite corners in a finite rectangular subgraph of the integer lattice, subject to certain constraints. In the two–dimensional case, we provide an explicit formula for the number of SAWs of a prescribed length, restricted to three-step directions. In addition, we develop an algorithm that produces faster computational results than the explicit formula. For some special cases, we present detailed counts of the SAWs in question. For rectangular grid graphs of higher dimensions, we provide a formula to count the number of SAWs that are exactly two steps longer than the shortest walks.
Ladattava julkaisu This is an electronic reprint of the original article. |