A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Step-constrained self-avoiding walks on finite grids




TekijätBelbachir, Hacène; Major, László; Németh, László; Szalay, László

KustantajaElsevier BV

Julkaisuvuosi2026

Lehti:Journal of Combinatorial Theory, Series A

Artikkelin numero106104

Vuosikerta218

ISSN0097-3165

eISSN1096-0899

DOIhttps://doi.org/10.1016/j.jcta.2025.106104

Verkko-osoitehttps://doi.org/10.1016/j.jcta.2025.106104

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/500389381


Tiivistelmä

The study of self-avoiding walks (SAWs) on integer lattices has been an area of active research for several decades. In this paper, we investigate the number of SAWs between two diagonally opposite corners in a finite rectangular subgraph of the integer lattice, subject to certain constraints. In the two–dimensional case, we provide an explicit formula for the number of SAWs of a prescribed length, restricted to three-step directions. In addition, we develop an algorithm that produces faster computational results than the explicit formula. For some special cases, we present detailed counts of the SAWs in question. For rectangular grid graphs of higher dimensions, we provide a formula to count the number of SAWs that are exactly two steps longer than the shortest walks.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-15-10 at 08:24