A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Optimal stopping with variable attention




TekijätLempa, Jukka; Saarinen, Harto; Sillanpää, Wiljami

KustantajaCAMBRIDGE UNIV PRESS

Julkaisuvuosi2025

Lehti:Advances in Applied Probability

ISSN0001-8678

eISSN1475-6064

DOIhttps://doi.org/10.1017/apr.2025.10022

Verkko-osoitehttps://doi.org/10.1017/apr.2025.10022

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/500333380


Tiivistelmä
We consider an optimal stopping problem of a linear diffusion under Poisson constraint where the agent can adjust the arrival rate of new stopping opportunities. We assume that the agent may switch the rate of the Poisson process between two values. Maintaining the lower rate incurs no cost, whereas the higher rate requires effort that is captured by a cost function c. We study a broad class of payoff functions, cost functions and diffusion dynamics, for which we explicitly characterize the solution to the constrained stopping problem. We also characterize the case where switching to the higher rate is always suboptimal. The results are illustrated with two examples.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
The Foundation for Economic Education (Liikesivistysrahasto) and OP Research Foundation (grant number 20240114) are acknowledged for funding. Emmy.network is acknowledged for continued support.


Last updated on 2025-30-09 at 09:11