A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Diverse oncogenes use common mechanisms to drive growth of major forms of human cancer




TekijätKauko, Otto; Turunen, Mikko; Pihlajamaa, Päivi; Häkkinen, Antti; Queiroz, Rayner M. L.; Pääkkönen, Mirva; Ventelä, Sami; Gaetani, Massimiliano; Lundström, Susanna L.; Murgia, Antonio; Sahu, Biswajyoti; Routila, Johannes; Wei, Gong-Hong; Irjala, Heikki; Griffin, Julian L.; Lilley, Kathryn S.; Kivioja, Teemu; Hautaniemi, Sampsa; Taipale, Jussi

KustantajaAmerican Association for the Advancement of Science

KustannuspaikkaWASHINGTON

Julkaisuvuosi2025

JournalScience Advances

Tietokannassa oleva lehden nimiSCIENCE ADVANCES

Lehden akronyymiSCI ADV

Artikkelin numeroeadt1798

Vuosikerta11

Numero34

Sivujen määrä20

eISSN2375-2548

DOIhttps://doi.org/10.1126/sciadv.adt1798

Verkko-osoitehttps://doi.org/10.1126/sciadv.adt1798

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/499837445


Tiivistelmä
Mutations in numerous genes contribute to human cancer, with different oncogenic lesions prevalent in different cancer types. However, the malignant phenotype is simple, characterized by unrestricted cell growth, invasion, and often metastasis. One possible hypothesis explaining this dichotomy is that cancer genes regulate common targets, which then function as master regulators of essential cancer phenotypes. To identify mechanisms that drive the most fundamental feature shared by all tumors-unrestricted cell proliferation-we used a multiomic approach, which identified translation and ribosome biogenesis as common targets of major oncogenic pathways across cancer types. Proteomic analysis of tumors and functional studies of cell cultures established nucleolar and coiled-body phosphoprotein 1 as a key node, whose convergent regulation, both transcriptionally and posttranslationally, is critical for tumor cell proliferation. Our results indicate that lineage-specific oncogenic pathways regulate the same set of targets for growth control, revealing key downstream nodes that could be targeted for therapy or chemoprevention.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
This work was supported by following grants: Academy of Finland, Finnish Center of Excellence program: 2012–2017 (250345) and 2018–2025 (312042) (J.T.); Cancer Foundation Finland (J.T.); Cancer Research UK grant C55958/A28801/RG99643 (J.T.); Swedish Research Council D0815201 (J.T.); Finnish medical foundation grant 3977 (O.K.); Cancer Foundation Finland 61-5961 (O.K.); Academy of Finland 288836 (P.P.); European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 965193 (DECIDER) (S.H.); and Academy of Finland projects 325956 and 322927 (S.H. and A.H.)


Last updated on 2025-17-09 at 13:18