A1 Vertaisarvioitu data-artikkeli tieteellisessä lehdessä
Annotated textual dataset PV600 of perovskite bandgaps for information extraction from literature
Tekijät: Sipilä, Matilda; Mehryary, Farrokh; Pyysalo, Sampo; Ginter, Filip; Todorovic, Milica
Kustantaja: NATURE PORTFOLIO
Kustannuspaikka: BERLIN
Julkaisuvuosi: 2025
Journal: Scientific Data
Tietokannassa oleva lehden nimi: SCIENTIFIC DATA
Lehden akronyymi: SCI DATA
Artikkelin numero: 1401
Vuosikerta: 12
Sivujen määrä: 11
eISSN: 2052-4463
DOI: https://doi.org/10.1038/s41597-025-05637-x
Verkko-osoite: https://www.nature.com/articles/s41597-025-05637-x
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/499752519
Scientific literature provides a variety of experimental and theoretical data which, if extracted, could offer new opportunities for data-driven discovery in materials research. Natural language processing (NLP) tools enable information extraction (IE) of structured information from unstructured text. The performance of IE tools needs to be systematically evaluated on manually annotated test datasets, but there are few publicly available annotated materials science datasets and none on perovskites, promising materials for photovoltaics. We present a perovskite literature dataset with 600 text segments extracted from an open access manuscript corpus. The PV600 dataset focuses on five inorganic and hybrid perovskites and contains 227 manually annotated bandgap values identified from 188 segments. Moreover, we recorded the bandgap type, whether it was experimental, computational, from the literature, or from unknown source. To demonstrate the intended use of the dataset, we applied it to evaluate the IE performance of a question answering (QA) method, a rule-based method, and generative language models (LLMs). We exhibit a further application in testing segment preselection with LLMs in IE.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
Research was funded by the Research Council of Finland through grant number 345698.