Konferenssiposteri

Disentangling Blood-Based Markers of Multiple Sclerosis Through Machine Learning: An Evaluation Study




TekijätVlieger, Robin; Rizia, Mst Mousumi; Amjadipour, Abolfazl; Cherbuin, Nicolas; Brüstle, Anne; Suominen, Hanna

ToimittajaHouseh, Mowafa S.; Tariq, Zain Ul Abideen; Al-Zubaidi, Mahmood; Shah, Uzair; Huesing, Elaine

Konferenssin vakiintunut nimiWorld Congress on Medical and Health Informatics

KustantajaIOS Press

Julkaisuvuosi2025

JournalStudies in Health Technology and Informatics

Kokoomateoksen nimiMEDINFO 2025 — Healthcare Smart × Medicine Deep: Proceedings of the 20th World Congress on Medical and Health Informatics

Tietokannassa oleva lehden nimiStudies in health technology and informatics

Sarjan nimiStudies in Health Technology and Informatics

Numero sarjassa329

Vuosikerta329

Aloitussivu1766

Lopetussivu1767

eISBN978-1-64368-608-0

ISSN0926-9630

eISSN1879-8365

DOIhttps://doi.org/10.3233/SHTI251204

Verkko-osoitehttps://doi.org/10.3233/shti251204


Tiivistelmä
Studies of blood-based markers in multiple sclerosis using machine learning for classification use widely varying methods. Here different configurations of machine learning algorithms, feature selection methods, and evaluation approaches were compared. Logistic Regression with Random Forests for feature selection and 10-fold cross-validation classified best, features depended on selection methods, and cross-validation data splits were heterogeneous. This suggests experimental setups influence classification and selected markers.


Julkaisussa olevat rahoitustiedot
This research was funded by the ANU OHIOH initiative, which aims to transform healthcare by developing new personalised health technologies and solutions in collaboration with patients, clinicians, and healthcare providers.


Last updated on 2025-05-09 at 14:04