A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Multi-modal Fusion of LiDAR and PRISMA Data for Cobalt Mapping: A Case Study from the Áramo Mine, Spain




TekijätFarahnakian, Fahimeh; Farahnakian, Farshad; Sheikh, Javad; Downey, Steven; Williams, Vaughan; Heikkonen, Jukka

ToimittajaPalaiahnakote, Shivakumara; Schuckers, Stephanie; Ogier, Jean-Marc; Bhattacharya, Prabi; Pal, Umapada; Bhattacharya, Saumik

Konferenssin vakiintunut nimiInternational Conference on Pattern Recognition

KustantajaSpringer Nature Switzerland

Julkaisuvuosi2025

JournalLecture Notes in Computer Science

Kokoomateoksen nimiPattern Recognition. ICPR 2024 International Workshops and Challenges: Kolkata, India, December 1, 2024, Proceedings, Part IV

Vuosikerta15617

Aloitussivu241

Lopetussivu255

ISBN978-3-031-88216-6

eISBN978-3-031-88217-3

ISSN0302-9743

eISSN1611-3349

DOIhttps://doi.org/10.1007/978-3-031-88217-3_17

Verkko-osoitehttps://doi.org/10.1007/978-3-031-88217-3_17


Tiivistelmä

This paper presents a framework for combining airborne LiDAR and hyperspectral PRISMA data to create a more comprehensive input for the Machine Learning (ML) models. To predict Cobalt concentration, we apply three well-known ML methods: Random Forest (RF), Support Vector Regression (SVR), and Multi-Layer Perceptron (MLP). A key challenge in this application is the limited availability of labeled data, which we address by employing three data augmentation techniques, ranging from traditional methods to deep learning-based approaches, to generate synthetic data points. Experiments were conducted on a mineralization site at the Áramo mine in Asturias, Spain. The results demonstrate that these data augmentation techniques significantly enhance the ML models’ ability to accurately predict the minority class, which is crucial for mineral exploration. Combining data from LiDAR and PRISMA improves model performance compared to using a single modality.



Last updated on 2025-29-08 at 07:08