A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Delirium Identification from Nursing Reports Using Large Language Models




TekijätGraf, Lisa; Ritzi, Alexander; Schöler, Lili M.

ToimittajaAndrikopoulou, Elisavet; Gallos, Parisis; Arvanitis, Theodoros N.; Austin, Rosalynn; Benis, Arriel; Cornet, Ronald; Chatzistergos, Panagiotis; Dejaco, Alexander; Dusseljee-Peute, Linda; Mohasseb, Alaa; Natsiavas, Pantelis; Nakkas, Haythem; Scott, Philip

Konferenssin vakiintunut nimiMedical Informatics Europe Conference

KustantajaIOS Press

Julkaisuvuosi2025

JournalStudies in Health Technology and Informatics

Kokoomateoksen nimiIntelligent Health Systems – From Technology to Data and Knowledge: Proceedings of MIE 2025

Vuosikerta327

Aloitussivu886

Lopetussivu887

eISBN978-1-64368-596-0

ISSN0926-9630

eISSN1879-8365

DOIhttps://doi.org/10.3233/SHTI250492

Verkko-osoitehttps://doi.org/10.3233/shti250492

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/499069125


Tiivistelmä

This study investigates large language models for delirium detection from nursing reports, comparing keyword matching, prompting, and finetuning. Using a manually labelled dataset from the University Hospital Freiburg, Germany, we tested Llama3 and Phi3 models. Both prompting and finetuning were effective, with finetuning Phi3 (3.8B) achieving the highest accuracy (90.24%) and AUROC (96.07%), significantly outperforming other methods.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-07-08 at 08:16