A1 Refereed original research article in a scientific journal

Euclid preparation LXIII. Simulations and non-linearities beyond Lambda cold dark matter. 2. Results from non-standard simulations




AuthorsRacz, G.; Breton, M. -A.; Fiorini, B.; Le Brun, A. M. C.; Winther, H. -A.; Sakr, Z.; Pizzuti, L.; Ragagnin, A.; Gayoux, T.; Altamura, E.; Carella, E.; Pardede, K.; Verza, G.; Koyama, K.; Baldi, M.; Pourtsidou, A.; Vernizzi, F.; Adame, A. G.; Adamek, J.; Avila, S.; Carbone, C.; Despali, G.; Giocoli, C.; Hernandez-Aguayo, C.; Hassani, F.; Kunz, M.; Li, B.; Rasera, Y.; Yepes, G.; Gonzalez-Perez, V.; Corasaniti, P. -S.; Garcia-Bellido, J.; Hamaus, N.; Kiessling, A.; Marinucci, M.; Moretti, C.; Mota, D. F.; Piga, L.; Pisani, A.; Szapudi, I.; Tallada-Crespi, P.; Aghanim, N.; Andreon, S.; Baccigalupi, C.; Bardelli, S.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Cardone, V. F.; Carretero, J.; Casas, S.; Castellano, M.; Castignani, G.; Cavuoti, S.; Cimatti, A.; Colodro-Conde, C.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Courbin, F.; Courtois, H. M.; Da Silva, A.; Degaudenzi, H.; De Lucia, G.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Ealet, A.; Farina, M.; Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Fumana, M.; Galeotta, S.; Gillis, B.; Gomez-Alvarez, P.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Hornstrup, A.; Ilic, S.; Jahnke, K.; Jhabvala, M.; Joachimi, B.; Keihanen, E.; Kermiche, S.; Kilbinger, M.; Kitching, T.; Kubik, B.; Kurki-Suonio, H.; Lilje, P. B.; Lindholm, V.; Lloro, I.; Mainetti, G.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Martinelli, M.; Martinet, N.; Marulli, F.; Massey, R.; Medinaceli, E.; Mei, S.; Mellier, Y.; Meneghetti, M.; Meylan, G.; Moresco, M.; Moscardini, L.; Niemi, S. -M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.; Popa, L. A.; Raison, F.; Rebolo, R.; Renzi, A.; Rhodes, J.; Riccio, G.; Romelli, E.; Roncarelli, M.; Saglia, R.; Salvignol, J. -C.; Sanchez, A. G.; Sapone, D.; Sartoris, B.; Schirmer, M.; Schrabback, T.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Steinwagner, J.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valenziano, L.; Vassallo, T.; Kleijn, G. Verdoes; Wang, Y.; Weller, J.; Zucca, E.; Biviano, A.; Boucaud, A.; Bozzo, E.; Burigana, C.; Calabrese, M.; Di Ferdinando, D.; Vigo, J. A. Escartin; Fabbian, G.; Finelli, F.; Gracia-Carpio, J.; Matthew, S.; Mauri, N.; Pezzotta, A.; Pontinen, M.; Porciani, C.; Scottez, V.; Tenti, M.; Viel, M.; Wiesmann, M.; Akrami, Y.; Allevato, V.; Anselmi, S.; Archidiacono, M.; Atrio-Barandela, F.; Balaguera-Antolinez, A.; Ballardini, M.; Bertacca, D.; Blot, L.; Borgani, S.; Bruton, S.; Cabanac, R.; Calabro, A.; Camacho Quevedo, B.; Cappi, A.; Caro, F.; Carvalho, C. S.; Castro, T.; Chambers, K. C.; Contarini, S.; Cooray, A. R.; De Caro, B.; de la Torre, S.; Desprez, G.; Diaz-Sanchez, A.; Diaz, J. J.; Di Domizio, S.; Dole, H.; Escoffier, S.; Ferrari, A. G.; Ferreira, P. G.; Ferrero, I.; Fontana, A.; Fornari, F.; Gabarra, L.; Ganga, K.; Gasparetto, T.; Gaztanaga, E.; Giacomini, F.; Gianotti, F.; Gozaliasl, G.; Gutierrez, C. M.; Hall, A.; Hildebrandt, H.; Hjorth, J.; Munoz, A. Jimenez; Kajava, J. J. E.; Kansal, V.; Karagiannis, D.; Kirkpatrick, C. C.; Lacasa, F.; Le Graet, J.; Legrand, L.; Lesgourgues, J.; Liaudat, T. I.; Loureiro, A.; Macias-Perez, J.; Maggio, G.; Magliocchetti, M.; Mannucci, F.; Maoli, R.; Martins, C. J. A. P.; Maurin, L.; Metcalf, R. B.; Miluzio, M.; Monaco, P.; Montoro, A.; Mora, A.; Morgante, G.; Nadathur, S.; Patrizii, L.; Popa, V.; Potter, D.; Reimberg, P.; Risso, I.; Rocci, P. -F.; Sahlen, M.; Schneider, A.; Sereno, M.; Silvestri, A.; Mancini, A. Spurio; Stadel, J.; Tanidis, K.; Tao, C.; Tessore, N.; Testera, G.; Teyssier, R.; Toft, S.; Tosi, S.; Troja, A.; Tucci, M.; Valieri, C.; Valiviita, J.; Vergani, D.; Vielzeuf, P.; Walton, N. A.; Euclid Collaboration

PublisherEDP Sciences

Publishing placeLES ULIS CEDEX A

Publication year2025

JournalAstronomy and Astrophysics

Journal name in sourceAstronomy & Astrophysics

Journal acronymASTRON ASTROPHYS

Article numberA232

Volume695

Number of pages22

ISSN0004-6361

eISSN1432-0746

DOIhttps://doi.org/10.1051/0004-6361/202452185

Web address https://doi.org/10.1051/0004-6361/202452185

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/499012709


Abstract
The Euclid mission will measure cosmological parameters with unprecedented precision. To distinguish between cosmological models, it is essential to generate realistic mock observables from cosmological simulations that were run in both the standard Lambda-cold-dark-matter (Lambda CDM) paradigm and in many non-standard models beyond Lambda CDM. We present the scientific results from a suite of cosmological N-body simulations using non-standard models including dynamical dark energy, k-essence, interacting dark energy, modified gravity, massive neutrinos, and primordial non-Gaussianities. We investigate how these models affect the large-scale-structure formation and evolution in addition to providing synthetic observables that can be used to test and constrain these models with Euclid data. We developed a custom pipeline based on the Rockstar halo finder and the nbodykit large-scale structure toolkit to analyse the particle output of non-standard simulations and generate mock observables such as halo and void catalogues, mass density fields, and power spectra in a consistent way. We compare these observables with those from the standard Lambda CDM model and quantify the deviations. We find that non-standard cosmological models can leave large imprints on the synthetic observables that we have generated. Our results demonstrate that non-standard cosmological N-body simulations provide valuable insights into the physics of dark energy and dark matter, which is essential to maximising the scientific return of Euclid.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Funding information in the publication
The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Agenzia Spaziale Italiana, the Austrian Forschungsf"orderungsgesellschaft funded through BMK, the Belgian Science Policy, the Canadian Euclid Consortium, the Deutsches Zentrum für Luft- und Raumfahrt, the DTU Space and the Niels Bohr Institute in Denmark, the French Centre National d’Etudes Spatiales, the Fundação para a Ciência e a Tecnologia, the Hungarian Academy of Sciences, the Ministerio de Ciencia, Innovación y Universidades, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Research Council of Finland, the Romanian Space Agency, the State Secretariat for Education, Research, and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (http://www.euclid-ec.org). GR’s research was supported by an appointment to the NASA Postdoctoral Program administered by Oak Ridge Associated Universities under contract with NASA. GR and AK were supported by JPL, which is run under contract by the California Institute of Technology for NASA (80NM0018D0004). GR acknowledges the support of the Research Council of Finland grant 354905. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC and visualization resources that have contributed to the research results reported within this paper. URL: http://www.tacc.utexas.edu. This project was provided with computer and storage resources by GENCI at TGCC thanks to the grant 2023-A0150402287 on Joliot Curie’s SKL partition. DFM thanks the Research Council of Norway for their support and the resources provided by UNINETT Sigma2 – the National Infrastructure for High-Performance Computing and Data Storage in Norway. This work has made use of Cosmo- Hub, developed by PIC (maintained by IFAE and CIEMAT) in collaboration with ICE-CSIC. CosmoHub received funding from the Spanish government (MCIN/AEI/10.13039/501100011033), the EU NextGeneration/PRTR (PRTRC17. I1), and the Generalitat de Catalunya. ZS acknowledges funding from DFG project 456622116 and support from the IRAP and IN2P3 Lyon computing centers. During part of this work, AMCLB was supported by a fellowship of PSL University-Paris Observatory. CG thanks the support from INAF theory Grant 2022: Illuminating Dark Matter using Weak Lensing by Cluster Satellites, PI: Carlo Giocoli. VGP is supported by the Atracción de Talento Contract no. 2019-T1/TIC-12702 granted by the Comunidad de Madrid in Spain. VGP, and by the Ministerio de Ciencia e Innovación (MICINN) under research grant PID2021-122603NB-C21. PNG-UNITsim was run thanks to the MareNostrum supercomputer in Spain and the Red Española de Supercomputación through grants: RES-AECT-2021-3-0004, RES-AECT-1-0007 & RES-AECT-2022-3-0030. We extend our sincere gratitude to Christian Arnold and Claudio Llinares for their valuable contributions to this research. Their work significantly influenced the development of this project.


Last updated on 2025-04-08 at 12:07