A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Hydrogen migration reactions via low internal energy pathways in aminobenzoic acid dications
Tekijät: Vetelainen, Onni; Babayan, Morsal; Pihlava, Lassi; Abid, Abdul Rahman; Kivimäki, Antti; Kukk, Edwin; Walsh, Noelle; Urpelainen, Samuli; Björneholm, Olle; Huttula, Marko; Alatalo, Matti; Patanen, Minna; Díaz-Tendero, Sergio
Kustantaja: ROYAL SOC CHEMISTRY
Kustannuspaikka: CAMBRIDGE
Julkaisuvuosi: 2025
Journal: Physical Chemistry Chemical Physics
Tietokannassa oleva lehden nimi: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Lehden akronyymi: PHYS CHEM CHEM PHYS
Vuosikerta: 27
Numero: 18
Aloitussivu: 9884
Lopetussivu: 9894
Sivujen määrä: 11
ISSN: 1463-9076
eISSN: 1463-9084
DOI: https://doi.org/10.1039/d5cp00415b
Verkko-osoite: https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00415b
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/498736613
Hydrogen migration is a ubiquitous phenomenon upon dissociation of organic molecules. Here we investigate the formation of a H3O+ fragment after core-level photoionization and Auger decay in aminobenzoic acid molecules - a process- that requires the migration of at least two hydrogen atoms. Using photoelectron-photoion coincidence spectroscopy, the formation of a H3O+ fragment is observed to be more probable in ortho-aminobenzoic acid than in meta- and para-aminobenzoic acid. Energy-resolved Auger electron-photoion coincidences are measured for the ortho-isomer to investigate the internal energy dependence of the fragmentation channels, most notably of those producing H3O+. The corresponding fragmentation channels and their mechanisms are investigated by exploring the potential energy surface with ab initio quantum chemistry methods and molecular dynamics simulations. Excited-state modeling of dicationic ortho-aminobenzoic acid is used to interpret features in the Auger spectra and identify the electronic states contributing to the signals in the Auger electron photoion coincidence map. We show that populating low-energy excited states of the dication is sufficient to trigger hydrogen migration and produce H3O+ efficiently.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
The research leading to these results has been supported by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie I4Future (Grant agreement No. 713606). OV acknowledges the COST Action CA18222 (Attosecond Chemistry). This project was also granted travel funding from CALIPSOPlus from the EU Framework Programme for Research and Innovation Horizon 2020 (Grant agreement No. 730872). ARA acknowledges the Väisälä Fund and the Finnish Academy of Science & Letters. We acknowledge the Research Council of Finland for financial support (including The University of Oulu and Research Council of Finland Profi5 – project 326291 and INTRICat project 341288).