A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Exploring noncollinear magnetic energy landscapes with Bayesian optimization
Tekijät: Baumsteiger, Jakob; Celiberti, Lorenzo; Rinke, Patrick; Todorović, Milica; Franchini, Cesare
Kustantaja: ROYAL SOC CHEMISTRY
Kustannuspaikka: CAMBRIDGE
Julkaisuvuosi: 2025
Journal: Digital Discovery
Tietokannassa oleva lehden nimi: DIGITAL DISCOVERY
Lehden akronyymi: DIGIT DISCOV
Vuosikerta: 4
Numero: 6
Aloitussivu: 1639
Lopetussivu: 1650
Sivujen määrä: 12
eISSN: 2635-098X
DOI: https://doi.org/10.1039/d4dd00402g
Verkko-osoite: https://doi.org/10.1039/D4DD00402G
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/498734892
The investigation of magnetic energy landscapes and the search for ground states of magnetic materials using ab initio methods like density functional theory (DFT) is a challenging task. Complex interactions, such as superexchange and spin-orbit coupling, make these calculations computationally expensive and often lead to non-trivial energy landscapes. Consequently, a comprehensive and systematic investigation of large magnetic configuration spaces is often impractical. We approach this problem by utilizing Bayesian optimization, an active machine learning scheme that has proven to be efficient in modeling unknown functions and finding global minima. Using this approach we can obtain the magnetic contribution to the energy as a function of one or more spin canting angles with relatively small numbers of DFT calculations. To assess the capabilities and the efficiency of the approach we investigate the noncollinear magnetic energy landscapes of selected materials containing 3d, 5d and 5f magnetic ions: Ba3MnNb2O9, LaMn2Si2, beta-MnO2, Sr2IrO4, UO2, Ba2NaOsO6 and kagome RhMn3. By comparing our results to previous ab initio studies that followed more conventional approaches, we observe significant improvements in efficiency.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
This work was supported by Piano Nazionale Resistenza e Resilienza (PNRR) – Next Generation Europe.