A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Exploring noncollinear magnetic energy landscapes with Bayesian optimization




TekijätBaumsteiger, Jakob; Celiberti, Lorenzo; Rinke, Patrick; Todorović, Milica; Franchini, Cesare

KustantajaROYAL SOC CHEMISTRY

KustannuspaikkaCAMBRIDGE

Julkaisuvuosi2025

JournalDigital Discovery

Tietokannassa oleva lehden nimiDIGITAL DISCOVERY

Lehden akronyymiDIGIT DISCOV

Vuosikerta4

Numero6

Aloitussivu1639

Lopetussivu1650

Sivujen määrä12

eISSN2635-098X

DOIhttps://doi.org/10.1039/d4dd00402g

Verkko-osoitehttps://doi.org/10.1039/D4DD00402G

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/498734892


Tiivistelmä

The investigation of magnetic energy landscapes and the search for ground states of magnetic materials using ab initio methods like density functional theory (DFT) is a challenging task. Complex interactions, such as superexchange and spin-orbit coupling, make these calculations computationally expensive and often lead to non-trivial energy landscapes. Consequently, a comprehensive and systematic investigation of large magnetic configuration spaces is often impractical. We approach this problem by utilizing Bayesian optimization, an active machine learning scheme that has proven to be efficient in modeling unknown functions and finding global minima. Using this approach we can obtain the magnetic contribution to the energy as a function of one or more spin canting angles with relatively small numbers of DFT calculations. To assess the capabilities and the efficiency of the approach we investigate the noncollinear magnetic energy landscapes of selected materials containing 3d, 5d and 5f magnetic ions: Ba3MnNb2O9, LaMn2Si2, beta-MnO2, Sr2IrO4, UO2, Ba2NaOsO6 and kagome RhMn3. By comparing our results to previous ab initio studies that followed more conventional approaches, we observe significant improvements in efficiency.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
This work was supported by Piano Nazionale Resistenza e Resilienza (PNRR) – Next Generation Europe.


Last updated on 2025-30-07 at 08:36