A1 Refereed original research article in a scientific journal

The role of the LysR-type transcription factor PacR in regulating nitrogen metabolism in Anabaena sp. PCC7120




AuthorsWerner, Elisa; Huokko, Tuomas; Santana-Sánchez, Anita; Picossi, Silvia; Nikkanen, Lauri; Herrero, Antonia; Allahverdiyeva, Yagut

PublisherWILEY

Publishing placeHOBOKEN

Publication year2025

JournalPhysiologia Plantarum

Journal name in sourcePHYSIOLOGIA PLANTARUM

Journal acronymPHYSIOL PLANTARUM

Article numbere70248

Volume177

Issue3

Number of pages13

ISSN0031-9317

eISSN1399-3054

DOIhttps://doi.org/10.1111/ppl.70248

Web address https://doi.org/10.1111/ppl.70248

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/498685512


Abstract

In the filamentous cyanobacterium Anabaena sp. PCC 7120, heterocyst formation is triggered by changes in the C/N-ratio and relies on transcriptional reprogramming. The transcription factor PacR is considered a global regulator of carbon assimilation under photoautotrophic conditions, influencing the carbon concentrating mechanism and photosynthesis. It plays a role in balancing reducing power generation while protecting the photosynthetic apparatus from oxidative damage. However, PacR also binds to promoters of genes associated with heterocyst formation, although the underlying mechanisms remain unclear. To explore this, we studied the response of a PacR-deletion mutant to a nitrogen source shift from ammonium to nitrate. The absence of PacR led to heterocyst formation in nitrate-containing media, as well as reduced growth and chlorophyll content. We observed impaired nitrate uptake and disrupted ammonium assimilation via the GS/GOGAT-cycle. This phenotype may stem from PacR-mediated regulation of key genes of nitrogen and carbon metabolism as well as photosynthesis. An impact on photosynthesis is also apparent in the mutant, including a slight decrease in the size of the photo-reducible Fed-pool, suggesting that a shortage of reducing equivalents may contribute to nitrogen metabolism impairment.


Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Funding information in the publication
Novo Nordisk Fonden, Grant/Award Number: NNF20OC0064371; Turku Collegium for Science, Medicine and Technology; The University of Turku Graduate School UTUGS; Jane ja Aatos Erkon Säätiö


Last updated on 2025-30-07 at 12:34