A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

CellRomeR: an R package for clustering cell migration phenotypes from microscopy data




TekijätKleino, Iivari; Perk, Mats; Sousa, António G G; Linden, Markus; Mathlin, Julia; Giesel, Daniel; Frolovaite, Paulina; Pietilä, Sami; Junttila, Sini; Suomi, Tomi; Elo, Laura L

ToimittajaYu Guoqiang

KustantajaOxford University Press (OUP)

Julkaisuvuosi2025

JournalBioinformatics Advances

Tietokannassa oleva lehden nimiBioinformatics Advances

Artikkelin numerovbaf069

Vuosikerta5

Numero1

eISSN2635-0041

DOIhttps://doi.org/10.1093/bioadv/vbaf069

Verkko-osoitehttps://doi.org/10.1093/bioadv/vbaf069

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/498584656


Tiivistelmä

Motivation: The analysis of cell migration using time-lapse microscopy typically focuses on track characteristics for classification and statistical evaluation of migration behaviour. However, considerable heterogeneity can be seen in cell morphology and microscope signal intensity features within the migrating cell populations.

Results: To utilize this information in cell migration analysis, we introduce here an R package CellRomeR, designed for the phenotypic clustering of cells based on their morphological and motility features from microscopy images. Utilizing machine learning techniques and building on an iterative clustering projection method, CellRomeR offers a new approach to identify heterogeneity in cell populations. The clustering of cells along the migration tracks allows association of distinct cellular phenotypes with different cell migration types and detection of migration patterns associated with stable and unstable cell phenotypes. The user-friendly interface of CellRomeR and multiple visualization options facilitate an in-depth understanding of cellular behaviour, addressing previous challenges in clustering cell trajectories using microscope cell tracking data.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
L.L.E. reports grants from the European Union's Horizon 2020 Research and Innovation Programme (955321), Academy of Finland (310561, 329278, 335434, 335611, 341342, and 364700), Sigrid Juselius Foundation, and Cancer Foundation Finland during the conduct of the study. Our research is also supported by University of Turku Graduate School (UTUGS), Biocenter Finland, and ELIXIR Finland. A.G.G.S. was supported by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 955321. M.L. has been supported by the Vilho, Yrjö and Kalle Väisälä Foundation.


Last updated on 2025-25-06 at 11:04