A1 Refereed original research article in a scientific journal

Euclid preparation: LXIX. The impact of relativistic redshift-space distortions on two-point clustering statistics from the Euclid wide spectroscopic survey




AuthorsElkhashab, M. Y.; Bertacca, D.; Porciani, C.; Salvalaggio, J.; Aghanim, N.; Amara, A.; Andreon, S.; Auricchio, N.; Baccigalupi, C.; Baldi, M.; Bardelli, S.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carbone, C.; Cardone, V. F.; Carretero, J.; Casas, R.; Casas, S.; Castellano, M.; Castignani, G.; Cavuoti, S.; Cimatti, A.; Colodro-Conde, C.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Courbin, F.; Courtois, H. M.; Da Silva, A.; Degaudenzi, H.; Di Giorgio, A. M.; Dinis, J.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Farina, M.; Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Galeotta, S.; Gillis, B.; Giocoli, C.; Gomez-Alvarez, P.; Grazian, A.; Grupp, F.; Guzzo, L.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Hornstrup, A.; Jahnke, K.; Jhabvala, M.; Joachimi, B.; Keihaenen, E.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kubik, B.; Kuijken, K.; Kuemmel, M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lindholm, V.; Lloro, I.; Mainetti, G.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Martinet, N.; Marulli, F.; Massey, R.; Medinaceli, E.; Mei, S.; Mellier, Y.; Meneghetti, M.; Meylan, G.; Moresco, M.; Moscardini, L.; Niemi, S. -M.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.; Popa, L. A.; Pozzetti, L.; Raison, F.; Rebolo, R.; Renzi, A.; Rhodes, J.; Riccio, G.; Romelli, E.; Roncarelli, M.; Saglia, R.; Sakr, Z.; Sanchez, A. G.; Sapone, D.; Schirmer, M.; Schneider, P.; Schrabback, T.; Scodeggio, M.; Secroun, A.; Sefusatti, E.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Steinwagner, J.; Surace, C.; Tallada-Crespi, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valenziano, L.; Vassallo, T.; Verdoes Kleijn, G.; Veropalumbo, A.; Wang, Y.; Weller, J.; Zamorani, G.; Zucca, E.; Biviano, A.; Boucaud, A.; Bozzo, E.; Burigana, C.; Calabrese, M.; Di Ferdinando, D.; Escartin Vigo, J. A.; Farinelli, R.; Finelli, F.; Gracia-Carpio, J.; Mauri, N.; Pezzotta, A.; Poentinen, M.; Scottez, V.; Tenti, M.; Viel, M.; Wiesmann, M.; Akrami, Y.; Allevato, V.; Anselmi, S.; Balaguera-Antolinez, A.; Ballardini, M.; Blanchard, A.; Blot, L.; Boehringer, H.; Borgani, S.; Bruton, S.; Cabanac, R.; Calabro, A.; Canas-Herrera, G.; Cappi, A.; Carvalho, C. S.; Castro, T.; Chambers, K. C.; Cooray, A. R.; Davini, S.; De Caro, B.; de la Torre, S.; Desprez, G.; Diaz-Sanchez, A.; Diaz, J. J.; Di Domizio, S.; Dole, H.; Escoffier, S.; Ferrari, A. G.; Ferreira, P. G.; Ferrero, I.; Finoguenov, A.; Fontana, A.; Fornari, F.; Gabarra, L.; Ganga, K.; Garcia-Bellido, J.; Gaztanaga, E.; Giacomini, F.; Gianotti, F.; Gozaliasl, G.; Hall, A.; Hartley, W. G.; Hildebrandt, H.; Hjorth, J.; Jimenez Munoz, A.; Kajava, J. J. E.; Kansal, V.; Karagiannis, D.; Kirkpatrick, C. C.; Lacasa, F.; Le Graet, J.; Legrand, L.; Loureiro, A.; Maggio, G.; Magliocchetti, M.; Mannucci, F.; Maoli, R.; Martins, C. J. A. P.; Matthew, S.; Maurin, L.; Metcalf, R. B.; Migliaccio, M.; Monaco, P.; Moretti, C.; Morgante, G.; Nadathur, S.; Walton, Nicholas A.; Patrizii, L.; Popa, V.; Potter, D.; Reimberg, P.; Risso, I; Rocci, P. -F.; Sahlen, M.; Schneider, A.; Sereno, M.; Sikkema, G.; Silvestri, A.; Simon, P.; Spurio Mancini, A.; Tanidis, K.; Tao, C.; Tessore, N.; Testera, G.; Teyssier, R.; Toft, S.; Tosi, S.; Troja, A.; Tucci, M.; Valieri, C.; Valiviita, J.; Vergani, D.; Vernizzi, F.; Verza, G.; Vielzeuf, P.; Hernandez-Monteagudo, C.; Euclid Collaboration

PublisherEDP SCIENCES S A

Publishing placeLES ULIS CEDEX A

Publication year2025

JournalAstronomy and Astrophysics

Journal name in sourceASTRONOMY & ASTROPHYSICS

Journal acronymASTRON ASTROPHYS

Article numberA85

Volume697

Number of pages22

ISSN0004-6361

eISSN1432-0746

DOIhttps://doi.org/10.1051/0004-6361/202452480

Web address https://doi.org/10.1051/0004-6361/202452480

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/498423689


Abstract
Measurements of galaxy clustering are affected by redshift-space distortions (RSDs). Peculiar velocities, gravitational lensing, and other light-cone projection effects modify the observed redshifts, fluxes, and sky positions of distant light sources. We determined which of these effects leave a detectable imprint on several two-point clustering statistics to be extracted from the Euclid wide spectroscopic survey (EWSS) on large scales. We generated 140 mock galaxy catalogues with the survey geometry and selection function of the EWSS and made use of the LIGER (LIght cones with GEneral Relativity) method to account for a variable number of relativistic RSDs to linear order in the cosmological perturbations. We estimated different two-point clustering statistics from the mocks and used the likelihood-ratio test to calculate the statistical significance with which the EWSS could reject the null hypothesis that certain relativistic projection effects can be neglected in the theoretical models. We find that the combined effects of lensing magnification and convergence imprint characteristic signatures on several clustering observables. Their signal-to-noise ratio (S/N) ranges between 2.5 and 6 (depending on the adopted summary statistic) for the highest-redshift galaxies in the EWSS. The corresponding feature due to the peculiar velocity of the Sun is measured with a S/N of order one or two. The multipoles of the power spectrum from the catalogues that include all relativistic effects reject the null hypothesis that RSDs are only generated by the variation in the peculiar velocity along the line of sight with a significance of 2.9 standard deviations. As a by-product of our study, we demonstrate that the mixing-matrix formalism to model finite-volume effects in the multipole moments of the power spectrum can be robustly applied to surveys made of several disconnected patches. Our results indicate that relativistic RSDs, in particular the contribution from weak gravitational lensing, cannot be disregarded when modelling two-point clustering statistics extracted from the EWSS.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Funding information in the publication
DB and MYE acknowledge support from the COSMOS network through the ASI (Italian Space Agency) Grants 2016-24-H.0, 2016-24-H.1-2018 and 2020-9-HH.0. MYE and DB acknowledge funding from the Italian Ministry of Education, University and Research (MIUR) through the “Dipartimenti di eccellenza” project “Science of the Universe”. The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Agenzia Spaziale Italiana, the Austrian Forschungsförderungsgesellschaft funded through BMK, the Belgian Science Policy, the Canadian Euclid Consortium, the Deutsches Zentrum für Luft- und Raumfahrt, the DTU Space and the Niels Bohr Institute in Denmark, the French Centre National d’Etudes Spatiales, the Fundação para a Ciência e a Tecnologia, the Hungarian Academy of Sciences, the Ministerio de Ciencia, Innovación y Universidades, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Research Council of Finland, the Romanian Space Agency, the State Secretariat for Education, Research, and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (https://www.euclid-ec.org).


Last updated on 2025-12-06 at 11:41