A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Teichmüller's Theorem in Higher Dimensions and Its Applications
Tekijät: Anatoly Golberg, Toshiyuki Sugawa, Matti Vuorinen
Kustantaja: SPRINGER HEIDELBERG
Julkaisuvuosi: 2020
Journal: Computational Methods and Function Theory
Tietokannassa oleva lehden nimi: COMPUTATIONAL METHODS AND FUNCTION THEORY
Lehden akronyymi: COMPUT METH FUNCT TH
Vuosikerta: 20
Numero: 3-4
Aloitussivu: 539
Lopetussivu: 558
Sivujen määrä: 20
ISSN: 1617-9447
eISSN: 2195-3724
DOI: https://doi.org/10.1007/s40315-020-00340-x
Rinnakkaistallenteen osoite: https://arxiv.org/abs/2006.01565
For a given ring (domain) in (R) over bar (n), we discuss whether its boundary components can be separated by an annular ring with modulus nearly equal to that of the given ring. In particular, we show that, for all n >= 3, the standard definition of uniformly perfect sets in terms of the Euclidean metric is equivalent to the boundedness of the moduli of the separating rings. We also establish separation theorems for a "half" of a ring. As applications of those results, we will prove boundary Holder continuity of quasiconformal mappings of the ball or the half space in R-n.
Ladattava julkaisu This is an electronic reprint of the original article. |