A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Teichmüller's Theorem in Higher Dimensions and Its Applications




TekijätAnatoly Golberg, Toshiyuki Sugawa, Matti Vuorinen

KustantajaSPRINGER HEIDELBERG

Julkaisuvuosi2020

JournalComputational Methods and Function Theory

Tietokannassa oleva lehden nimiCOMPUTATIONAL METHODS AND FUNCTION THEORY

Lehden akronyymiCOMPUT METH FUNCT TH

Vuosikerta20

Numero3-4

Aloitussivu539

Lopetussivu558

Sivujen määrä20

ISSN1617-9447

eISSN2195-3724

DOIhttps://doi.org/10.1007/s40315-020-00340-x

Rinnakkaistallenteen osoitehttps://arxiv.org/abs/2006.01565


Tiivistelmä
For a given ring (domain) in (R) over bar (n), we discuss whether its boundary components can be separated by an annular ring with modulus nearly equal to that of the given ring. In particular, we show that, for all n >= 3, the standard definition of uniformly perfect sets in terms of the Euclidean metric is equivalent to the boundedness of the moduli of the separating rings. We also establish separation theorems for a "half" of a ring. As applications of those results, we will prove boundary Holder continuity of quasiconformal mappings of the ball or the half space in R-n.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 21:18