A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Avoiding abelian powers cyclically




TekijätPeltomäki Jarkko, Whiteland Markus A.

KustantajaElsevier

Julkaisuvuosi2020

JournalAdvances in Applied Mathematics

Artikkelin numero102095

Vuosikerta121

Sivujen määrä22

ISSN0196-8858

eISSN1090-2074

DOIhttps://doi.org/10.1016/j.aam.2020.102095

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/49631547


Tiivistelmä

We study a new notion of cyclic avoidance of abelian powers. A finite word $w$ avoids abelian $N$-powers cyclically if for each abelian $N$-power of period $m$ occurring in the infinite word $w^\omega$, we have $m \geq |w|$. Let $\mathcal{A}(k)$ be the least integer $N$ such that for all $n$ there exists a word of length $n$ over a $k$-letter alphabet that avoids abelian $N$-powers cyclically. Let $\mathcal{A}_\infty(k)$ be the least integer $N$ such that there exist arbitrarily long words over a $k$-letter alphabet that avoid abelian $N$-powers cyclically.

We prove that $5 \leq \mathcal{A}(2) \leq 8$, $3 \leq \mathcal{A}(3) \leq 4$, $2 \leq \mathcal{A}(4) \leq 3$, and $\mathcal{A}(k) = 2$ for $k \geq 5$. Moreover, we show that $\mathcal{A}_\infty(2) = 4$, $\mathcal{A}_\infty(3) = 3$, and $\mathcal{A}_\infty(4) = 2$.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 22:09