A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

A template for data-driven personas: Analyzing 31 quantitatively oriented persona profiles




TekijätJoni Salminen, Kathleen Guan, Lene Nielsen, Soon-gyo Jung, Bernard J. Jansen

ToimittajaSakae Yamamoto, Hirohiko Mori

Konferenssin vakiintunut nimiInternational Conference on Human-Computer Interaction

KustantajaSpringer

Julkaisuvuosi2020

JournalInternational Conference on Human-Computer Interaction

Kokoomateoksen nimiHCII 2020: Human Interface and the Management of Information. Designing Information

Tietokannassa oleva lehden nimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Sarjan nimiLecture Notes in Computer Science

Vuosikerta12184

Aloitussivu125

Lopetussivu144

ISBN978-3-030-50019-1

eISBN978-3-030-50020-7

ISSN0302-9743

DOIhttps://doi.org/10.1007/978-3-030-50020-7_8


Tiivistelmä

Following the proliferation of personified big data and data science algorithms, data-driven user personas (DDPs) are becoming more common in persona design. However, the DDP templates are seemingly diverse and fragmented, prompting a need for a synthesis of the information included in these personas. Analyzing 31 templates for DDPs, we find that DDPs vary greatly by their information richness, as the most informative layout has more than 300% more information categories than the least informative layout. We also find that graphical complexity and information richness do not necessarily correlate. Furthermore, the chosen persona development method may carry over to the information presentation, with quantitative data typically presented as scores, metrics, or tables and qualitative data as text-rich narratives. We did not find one “general template” for DDPs and defining this is difficult due to the variety of the outputs of different methods as well as different information needs of the persona users.



Last updated on 2024-26-11 at 21:36