A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Euclid preparation: LXVI. Impact of line-of-sight projections on the covariance between galaxy cluster multi-wavelength observable properties: Insights from hydrodynamic simulations
Tekijät: Ragagnin, A.; Saro, A.; Andreon, S.; Biviano, A.; Dolag, K.; Ettori, S.; Giocoli, C.; Le Brun, A. M. C.; Mamon, G. A.; Maughan, B. J.; Meneghetti, M.; Moscardini, L.; Pacaud, F.; Pratt, G. W.; Sereno, M.; Borgani, S.; Calura, F.; Castignani, G.; De Petris, M.; Eckert, D.; Lesci, G. F.; Macias-Perez, J.; Maturi, M.; Amara, A.; Auricchio, N.; Baccigalupi, C.; Baldi, M.; Bardelli, S.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carbone, C.; Carretero, J.; Casas, S.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Colodro-Conde, C.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Courbin, F.; Courtois, H. M.; Da Silva, A.; Degaudenzi, H.; De Lucia, G.; Dinis, J.; Dubath, F.; Dupac, X.; Farina, M.; Farrens, S.; Ferriol, S.; Frailis, M.; Franceschi, E.; Fumana, M.; George, K.; Gillis, B.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Holmes, W.; Hook, I.; Hormuth, F.; Hornstrup, A.; Jahnke, K.; Keihänen, E.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kubik, B.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lindholm, V.; Lloro, I.; Maino, D.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Martinelli, M.; Martinet, N.; Marulli, F.; Massey, R.; Maurogordato, S.; Medinaceli, E.; Mei, S.; Mellier, Y.; Meylan, G.; Moresco, M.; Munari, E.; Neissner, C.; Niemi, S.-M.; Nightingale, J. W.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Pettorino, V.; Polenta, G.; Poncet, M.; Popa, L. A.; Pozzetti, L.; Raison, F.; Renzi, A.; Rhodes, J.; Riccio, G.; Romelli, E.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Sakr, Z.; Sánchez, A. G.; Sapone, D.; Sartoris, B.; Scaramella, R.; Schneider, P.; Schrabback, T.; Secroun, A.; Sefusatti, E.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Steinwagner, J.; Tallada-Crespí, P.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valenziano, L.; Vassallo, T.; Verdoes Kleijn, G.; Veropalumbo, A.; Wang, Y.; Weller, J.; Zamorani, G.; Zucca, E.; Bolzonella, M.; Boucaud, A.; Bozzo, E.; Burigana, C.; Calabrese, M.; Di Ferdinando, D.; Escartin Vigo, J. A.; Farinelli, R.; Gracia-Carpio, J.; Mauri, N.; Scottez, V.; Tenti, M.; Viel, M.; Wiesmann, M.; Akrami, Y.; Allevato, V.; Anselmi, S.; Ballardini, M.; Bergamini, P.; Blanchard, A.; Blot, L.; Bruton, S.; Cabanac, R.; Calabro, A.; Canas-Herrera, G.; Cappi, A.; Carvalho, C. S.; Castro, T.; Chambers, K. C.; Contarini, S.; Cooray, A. R.; Costanzi, M.; De Caro, B.; de la Torre, S.; Desprez, G.; Díaz-Sánchez, A.; Di Domizio, S.; Dole, H.; Escoffier, S.; Ferrari, A. G.; Ferreira, P. G.; Ferrero, I.; Finelli, F.; Fornari, F.; Gabarra, L.; Ganga, K.; García-Bellido, J.; Gaztanaga, E.; Giacomini, F.; Gozaliasl, G.; Hall, A.; Hildebrandt, H.; Hjorth, J.; Jimenez Muñoz, A.; Kajava, J. J. E.; Kansal, V.; Karagiannis, D.; Kirkpatrick, C. C.; Legrand, L.; Libet, G.; Loureiro, A.; Maggio, G.; Magliocchetti, M.; Mannucci, F.; Maoli, R.; Martins, C. J. A. P.; Matthew, S.; Maurin, L.; Metcalf, R. B.; Monaco, P.; Moretti, C.; Morgante, G.; Walton, Nicholas A.; Patrizii, L.; Pezzotta, A.; Pöntinen, M.; Popa, V.; Porciani, C.; Potter, D.; Risso, I.; Rocci, P.-F.; Sahlén, M.; Schneider, A.; Schultheis, M.; Simon, P.; Spurio Mancini, A.; Tao, C.; Testera, G.; Teyssier, R.; Toft, S.; Tosi, S.; Troja, A.; Tucci, M.; Valieri, C.; Valiviita, J.; Vergani, D.; Verza, G.; Euclid Collaboration
Kustantaja: EDP Sciences
Julkaisuvuosi: 2025
Journal: Astronomy and Astrophysics
Tietokannassa oleva lehden nimi: Astronomy & Astrophysics
Artikkelin numero: A282
Vuosikerta: 695
ISSN: 0004-6361
eISSN: 1432-0746
DOI: https://doi.org/10.1051/0004-6361/202451347
Verkko-osoite: https://doi.org/10.1051/0004-6361/202451347
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/492144979
Context. Cluster cosmology can benefit from combining multi-wavelength studies. In turn, these studies benefit from a characterisation of the correlation coefficients among different mass-observable relations.
Aims. In this work, we aim to provide information on the scatter, skewness, and covariance of various mass-observable relations in galaxy clusters in cosmological hydrodynamic simulations. This information will help future analyses improve the general approach to accretion histories and projection effects, as well as to model mass-observable relations for cosmology studies.
Methods. We identified galaxy clusters in Magneticum Box2b simulations with masses of M200c > 1014 M⊙ at redshifts of z = 0.24 and z = 0.90. Our analysis included Euclid-derived properties such as richness, stellar mass, lensing mass, and concentration. Additionally, we investigated complementary multi-wavelength data, including X-ray luminosity, integrated Compton-y parameter, gas mass, and temperature. We then examined the impact of projection effects on mass-observable residuals and correlations.
Results. We find that at intermediate redshift (z = 0.24), projection effects have the greatest impact of lensing concentration, richness, and gas mass in terms of the scatter and skewness of the log-residuals of scaling relations. The contribution of projection effects can be significant enough to boost a spurious hot-versus cold-baryon correlations and consequently hide underlying correlations due to halo accretion histories. At high redshift (z = 0.9), the richness has a much lower scatter (of log-residuals), while the quantity that is most impacted by projection effects is the lensing mass. The lensing concentration reconstruction, in particular, is affected by deviations of the reduced-shear profile shape from that derived using a Navarro-Frenk-White (NFW) profile; the amount of interlopers in the line of sight, on the other hand, is not as important.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
We thank the anonymous referee for the useful comments. The Magneticum Pathfinder simulations were partially performed at the Leibniz-Rechenzentrum with CPU time assigned to the Project ‘pr86re’. AR and LM acknowledge support from the grant PRIN-MIUR 2017 WSCC32 and acknowledges the usage of the INAF-OATs IT framework (Taffoni et al. 2020; Bertocco et al. 2020), and the space filling curve improvement on Gadget3 (Ragagnin et al. 2016). Antonio Ragagnin thanks Veronica Biffi and Elena Rasia for the X-ray computation routines and tables. KD acknowledges support by the COMPLEX project from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program grant agreement ERC-2019-AdG 882679. LM acknowledges the financial contribution from the grant PRIN-MUR 2022 20227RNLY3 “The concordance cosmological model: stress-tests with galaxy clusters” supported by Next Generation EU. CG and LM acknowledge support from the grant ASI n.2018-23-HH.0. AR and CG acknowledge funding from INAF theory Grant 2022: Illuminating Dark Matter using Weak Lensing by Cluster Satellites, PI: Carlo Giocoli. SB acknowledges partial financial support from the INFN InDark grant. AMCLB was supported by a fellowship of PSL University hosted by the Paris Observatory. We used the package colossus (see Diemer 2018) for computing Σ and ΔΣ as expected from NFW profiles. AR and FC acknowledge co-funding by the European Union – NextGenerationEU within PRIN 2022 project n.20229YBSAN – Globular clusters in cosmological simulations and in lensed fields: from their birth to the present epoch. The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Agenzia Spaziale Italiana, the Austrian Forschungsförderungsgesellschaft funded through BMK, the Belgian Science Policy, the Canadian Euclid Consortium, the Deutsches Zentrum für Luft-und Raumfahrt, the DTU Space and the Niels Bohr Institute in Denmark, the French Centre National d’Etudes Spatiales, the Fundação para a Ciência e a Tecnologia, the Hungarian Academy of Sciences, the Ministerio de Ciencia, Innovación y Universidades, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool 870 Voor Astronomie, the Norwegian Space Agency, the Research Council of Finland, the Romanian Space Agency, the State Secretariat for Education, Research, and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid website (www.euclid-ec.org).