A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Euclid preparation LXV: Determining the weak lensing mass accuracy and precision for galaxy clusters




TekijätIngoglia, L.; Sereno, M.; Farrens, S.; Giocoli, C.; Baumont, L.; Lesci, G. F.; Moscardini, L.; Murray, C.; Vannier, M.; Biviano, A.; Carbone, C.; Covone, G.; Despali, G.; Maturi, M.; Maurogordato, S.; Meneghetti, M.; Radovich, M.; Altieri, B.; Amara, A.; Andreon, S.; Auricchio, N.; Baccigalupi, C.; Baldi, M.; Bardelli, S.; Bellagamba, F.; Bender, R.; Bernardeau, F.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carretero, J.; Casas, S.; Castellano, M.; Castignani, G.; Cavuoti, S.; Cimatti, A.; Colodro-Conde, C.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Courbin, F.; Courtois, H. M.; Cropper, M.; Da Silva, A.; Degaudenzi, H.; De Lucia, G.; Dinis, J.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Ealet, A.; Farina, M.; Faustini, F.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Fumana, M.; Galeotta, S.; Gillard, W.; Gillis, B.; Gómez-Alvarez, P.; Grazian, A.; Grupp, F.; Guzzo, L.; Haugan, S. V. H.; Holmes, W.; Hormuth, F.; Hornstrup, A.; Hudelot, P.; Ilić, S.; Jahnke, K.; Jhabvala, M.; Joachimi, B.; Keihänen, E.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kubik, B.; Kümmel, M.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lindholm, V.; Lloro, I.; Mainetti, G.; Maiorano, E.; Mansutti, O.; Marcin, S.; Marggraf, O.; Markovic, K.; Martinelli, M.; Martinet, N.; Marulli, F.; Massey, R.; Medinaceli, E.; Mei, S.; Melchior, M.; Mellier, Y.; Merlin, E.; Meylan, G.; Moresco, M.; Munari, E.; Niemi, S.-M.; Padilla, C.; Paech, K.; Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.; Popa, L. A.; Pozzetti, L.; Raison, F.; Renzi, A.; Rhodes, J.; Riccio, G.; Romelli, E.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Sakr, Z.; Salvignol, J.-C.; Sánchez, A. G.; Sapone, D.; Sartoris, B.; Schirmer, M.; Schneider, P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Steinwagner, J.; Tallada-Crespí, P.; Tavagnacco, D.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valenziano, L.; Vassallo, T.; Verdoes Kleijn, G.; Veropalumbo, A.; Wang, Y.; Weller, J.; Zamorani, G.; Zucca, E.; Bolzonella, M.; Bozzo, E.; Burigana, C.; Calabrese, M.; Di Ferdinando, D.; Escartin Vigo, J. A.; Farinelli, R.; Finelli, F.; Gracia-Carpio, J.; Matthew, S.; Pezzotta, A.; Pöntinen, M.; Scottez, V.; Tenti, M.; Viel, M.; Wiesmann, M.; Akrami, Y.; Allevato, V.; Anselmi, S.; Archidiacono, M.; Atrio-Barandela, F.; Ballardini, M.; Bertacca, D.; Bethermin, M.; Blanchard, A.; Blot, L.; Böhringer, H.; Borgani, S.; Bruton, S.; Cabanac, R.; Calabro, A.; Cañas-Herrera, G.; Cappi, A.; Caro, F.; Carvalho, C. S.; Castro, T.; Chambers, K. C.; Contarini, S.; Cooray, A. R.; Costanzi, M.; Cucciati, O.; Desprez, G.; Díaz-Sánchez, A.; Diaz, J. J.; Di Domizio, S.; Dole, H.; Escoffier, S.; Ezziati, M.; Ferrari, A. G.; Ferreira, P. G.; Ferrero, I.; Finoguenov, A.; Fontana, A.; Fornari, F.; Gabarra, L.; Ganga, K.; García-Bellido, J.; Gasparetto, T.; Gautard, V.; Gaztanaga, E.; Giacomini, F.; Gianotti, F.; Gozaliasl, G.; Gutierrez, C. M.; Hall, A.; Hildebrandt, H.; Hjorth, J.; Jimenez Muñoz, A.; Kajava, J. J. E.; Kansal, V.; Karagiannis, D.; Kirkpatrick, C. C.; Le Brun, A. M. C.; Le Graet, J.; Legrand, L.; Lesgourgues, J.; Liaudat, T. I.; Loureiro, A.; Macias-Perez, J.; Maggio, G.; Magliocchetti, M.; Mannucci, F.; Maoli, R.; Martín-Fleitas, J.; Martins, C. J. A. P.; Maurin, L.; Metcalf, R. B.; Miluzio, M.; Monaco, P.; Montoro, A.; Mora, A.; Moretti, C.; Morgante, G.; Nadathur, S.; Walton Nicholas, A.; Pagano, L.; Patrizii, L.; Popa, V.; Potter, D.; Risso, I.; Rocci, P.-F.; Sahlén, M.; Sarpa, E.; Schneider, A.; Schultheis, M.; Simon, P.; Spurio Mancini, A.; Stadel, J.; Stanford, S. A.; Tanidis, K.; Tao, C.; Testera, G.; Teyssier, R.; Toft, S.; Tosi, S.; Troja, A.; Tucci, M.; Valieri, C.; Valiviita, J.; Vergani, D.; Verza, G.; Vielzeuf, P.; Euclid Collaboration

KustantajaEDP Sciences

Julkaisuvuosi2025

JournalAstronomy and Astrophysics

Tietokannassa oleva lehden nimiAstronomy & Astrophysics

Artikkelin numeroA280

Vuosikerta695

ISSN0004-6361

eISSN1432-0746

DOIhttps://doi.org/10.1051/0004-6361/202452122

Verkko-osoitehttps://doi.org/10.1051/0004-6361/202452122

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/491945096


Tiivistelmä
The ability to measure unbiased weak-lensing (WL) masses is a key ingredient to exploit galaxy clusters as a competitive cosmological probe with the ESA Euclid survey or future missions. We investigate the level of accuracy and precision of cluster masses measured with the Euclid data processing pipeline. We use the DEMNUni-Cov N-body simulations to assess how well the WL mass probes the true halo mass, and, then, how well WL masses can be recovered in the presence of measurement uncertainties. We consider different halo mass density models, priors, and mass point estimates, that is the biweight, mean, and median of the marginalised posterior distribution and the maximum likelihood parameter. WL mass differs from true mass due to, for example, the intrinsic ellipticity of sources, correlated or uncorrelated matter and large-scale structure, halo triaxiality and orientation, and merging or irregular morphology. In an ideal scenario without observational or measurement errors, the maximum likelihood estimator is the most accurate, with WL masses biased low by {bM} =a-14.6-±-1.7% on average over the full range M200c > 5×1013 M⊙ and z < 1. Due to the stabilising effect of the prior, the biweight, mean, and median estimates are more precise, that is with smaller intrinsic scatter. The scatter decreases with increasing mass and informative priors can significantly reduce the scatter. Halo mass density profiles with a truncation provide better fits to the lensing signal, while the accuracy and precision are not significantly affected. We further investigate the impact of various additional sources of systematic uncertainty on the WL mass estimates, namely the impact of photometric redshift uncertainties and source selection, the expected performance of Euclid cluster detection algorithms, and the presence of masks. Taken in isolation, we find that the largest effect is induced by non-conservative source selection with {bM} =a-33.4-±-1.6%. This effect can be mostly removed with a robust selection. As a final Euclid-like test, we combine systematic effects in a realistic observational setting and find {bM} =a-15.5-±-2.4% under a robust selection. This is very similar to the ideal case, though with a slightly larger scatter mostly due to cluster redshift uncertainty and miscentering.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Agenzia Spaziale Italiana, the Austrian Forschungsförderungsgesellschaft funded through BMK, the Belgian Science Policy, the Canadian Euclid Consortium, the Deutsches Zentrum für Luft- und Raumfahrt, the DTU Space and the Niels Bohr Institute in Denmark, the French Centre National d’Etudes Spatiales, the Fundação para a Ciência e a Tecnologia, the Hungarian Academy of Sciences, the Ministerio de Ciencia, Innovación y Universidades, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Research Council of Finland, the Romanian Space Agency, the State Secretariat for Education, Research, and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (https://www.euclid-ec.org/). LI and MS acknowledge financial contributions from INAF Theory Grant 2023: Gravitational lensing detection of matter distribution at galaxy cluster boundaries and beyond (1.05.23.06.17). LI acknowledges financial support from the INAF grant 2023: Testing the origin of giant radio halos with joint LOFAR (1.05.23.05.11). MS acknowledges financial contributions from contract ASI-INAF n.2017-14-H.0 and contract INAF mainstream project 1.05.01.86.10. LI and LM acknowledge the grants ASI n.2018- 23-HH.0 and ASI n. 2024-10-HH.0 “Attività scientifiche per la missione Euclid – fase E”. LM acknowledges the grant ASI n.I/023/12/0. GC thanks the support from INAF theory Grant 2022: Illuminating Dark Matter using Weak Lensing by Cluster Satellites, PI: Carlo Giocoli. GC and LM thank Prin-MUR 2022 supported by Next Generation EU (n.20227RNLY3 The concordance cosmological model: stress-tests with galaxy clusters). The DEMNUni-cov simulations were carried out in the framework of “The Dark Energy and Massive Neutrino Universe covariances" project, using the Tier-0 Intel OmniPath Cluster Marconi-A1 of the Centro Interuniversitario del Nord-Est per il Calcolo Elettronico (CINECA). We acknowledge a generous CPU and storage allocation by the Italian Super-Computing Resource Allocation (ISCRA) as well as from the coordination of the “Accordo Quadro MoU per lo svolgimento di attività congiunta di ricerca Nuove frontiere in Astrofisica: HPC e Data Exploration di nuova generazione”, together with storage from INFN-CNAF and INAF-IA2. GD acknowledges the funding by the European Union – NextGenerationEU, in the framework of the HPC project – “National Centre for HPC, Big Data and Quantum Computing” (PNRR – M4C2 – I1.4 – CN00000013 – CUP J33C22001170001). LM acknowledges the financial contribution from the grant PRIN-MUR 2022 20227RNLY3 “The concordance cosmological model: stress-tests with galaxy clusters” supported by Next Generation EU and from the grants ASI n.2018-23-HH.0 and n. 2024-10-HH.0 “Attività scientifiche per la missione Euclid – fase E”.


Last updated on 2025-22-05 at 11:42