A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Detection of RS Oph with LST-1 and modelling of its HE/VHE gamma-ray emission
Tekijät: Abe, K.; Abe, S.; Abhishek, A.; Acero, F.; Aguasca-Cabot, A.; Agudo, I.; Alispach, C.; Alvarez Crespo, N.; Ambrosino, D.; Antonelli L., A.; Aramo, C.; Arbet-Engels, A.; Arcaro, C.; Asano, K.; Aubert, P.; Baktash, A.; Balbo, M.; Bamba, A.; Baquero Larriva, A.; Barres de Almeida, U.; Barrio J., A.; Barrios Jiménez, L.; Batkovic, I.; Baxter, J.; Becerra González, J.; Bernardini, E.; Bernete, J.; Berti, A.; Bezshyiko, I.; Bhattacharjee, P.; Bigongiari, C.; Bissaldi, E.; Blanch, O.; Bonnoli, G.; Bordas, P.; Borkowski, G.; Brunelli, G.; Bulgarelli, A.; Bunse, M.; Burelli, I.; Burmistrov, L.; Buscemi, M.; Cardillo, M.; Caroff, S.; Carosi, A.; Carrasco M., S.; Cassol, F.; Castrejón, N.; Cerasole, D.; Ceribella, G.; Chai, Y.; Cheng, K.; Chiavassa, A.; Chikawa, M.; Chon, G.; Chytka, L.; Cicciari G., M.; Cifuentes, A.; Contreras J., L.; Cortina, J.; Costantini, H.; Da Vela, P.; Dalchenko, M.; Dazzi, F.; De Angelis, A.; de Bony de Lavergne, M.; De Lotto, B.; de Menezes, R.; Del Burgo, R.; Del Peral, L.; Delgado, C.; Delgado Mengual, J.; della Volpe, D.; Dellaiera, M.; Di Piano, A.; Di Pierro, F.; Di Tria, R.; Di Venere, L.; Díaz, C.; Dominik R., M.; Dominis Prester, D.; Donini, A.; Dore, D.; Dorner, D.; Doro, M.; Eisenberger, L.; Elsässer, D.; Emery, G.; Escudero, J.; Fallah Ramazani, V.; Ferrarotto, F.; Fiasson, A.; Foffano, L.; Freixas Coromina, L.; Fröse, S.; Fukazawa, Y.; Garcia López, R.; Gasbarra, C.; Gasparrini, D.; Geyer, D.; Giesbrecht Paiva, J.; Giglietto, N.; Giordano, F.; Gliwny, P.; Godinovic, N.; Grau, R.; Green, D.; Green, J.; Gunji, S.; Günther, P.; Hackfeld, J.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashi, K.; Heckmann, L.; Heller, M.; Herrera Llorente, J.; Hirotani, K.; Hoffmann, D.; Horns, D.; Houles, J.; Hrabovsky, M.; Hrupec, D.; Hui, D.; Iarlori, M.; Imazawa, R.; Inada, T.; Inome, Y.; Inoue, S.; Ioka, K.; Iori, M.; Iuliano, A.; Jahanvi, J.; Jimenez Martinez, I.; Jimenez Quiles, J.; Jurysek, J.; Kagaya, M.; Kalashev, O.; Karas, V.; Katagiri, H.; Kataoka, J.; Kerszberg, D.; Kobayashi, Y.; Kohri, K.; Kong, A.; Kubo, H.; Kushida, J.; Lacave, B.; Lainez, M.; Lamanna, G.; Lamastra, A.; Lemoigne, L.; Linhoff, M.; Longo, F.; López-Coto, R.; López-Moya, M.; López-Oramas, A.; Loporchio, S.; Lorini, A.; Lozano Bahilo, J.; Luciani, H.; Luque-Escamilla P., L.; Majumdar, P.; Makariev, M.; Mallamaci, M.; Mandat, D.; Manganaro, M.; Manicò, G.; Mannheim, K.; Marchesi, S.; Mariotti, M.; Marquez, P.; Marsella, G.; Martí, J.; Martinez, O.; Martínez, G.; Martínez, M.; Mas-Aguilar, A.; Maurin, G.; Mazin, D.; Méndez-Gallego, J.; Menon, S.; Mestre Guillen, E.; Micanovic, S.; Miceli, D.; Miener, T.; Miranda J., M.; Mirzoyan, R.; Mizuno, T.; Molero Gonzalez, M.; Molina, E.; Montaruli, T.; Moralejo, A.; Morcuende, D.; Morselli, A.; Moya, V.; Muraishi, H.; Nagataki, S.; Nakamori, T.; Neronov, A.; Nickel, L.; Nieto Castaño, D.; Nievas Rosillo, M.; Nikolic, L.; Nishijima, K.; Noda, K.; Nosek, D.; Novotny, V.; Nozaki, S.; Ohishi, M.; Ohtani, Y.; Oka, T.; Okumura, A.; Orito, R.; Otero-Santos, J.; Ottanelli, P.; Owen, E.; Palatiello, M.; Paneque, D.; Pantaleo F., R.; Paoletti, R.; Paredes J., M.; Pech, M.; Pecimotika, M.; Peresano, M.; Pfeifle, F.; Pietropaolo, E.; Pihet, M.; Pirola, G.; Plard, C.; Podobnik, F.; Pons, E.; Prandini, E.; Prouza, M.; Rainò, S.; Rando, R.; Rhode, W.; Ribó, M.; Righi, C.; Rizi, V.; Rodriguez Fernandez, G.; Rodríguez Frías M., D.; Romano, P.; Ruina, A.; Ruiz-Velasco, E.; Saito, T.; Sakurai, S.; Sanchez D., A.; Sano, H.; Šarić, T.; Sato, Y.; Saturni F., G.; Savchenko, V.; Schiavone, F.; Schleicher, B.; Schmuckermaier, F.; Schubert J., L.; Schussler, F.; Schweizer, T.; Seglar Arroyo, M.; Siegert, T.; Simongini, A.; Sitarek, J.; Sliusar, V.; Stamerra, A.; Strišković, J.; Strzys, M.; Suda, Y.; Sunny, A.; Tajima, H.; Takahashi, H.; Takahashi, M.; Takata, J.; Takeishi, R.; Tam P. H., T.; Tanaka S., J.; Tateishi, D.; Tavernier, T.; Temnikov, P.; Terada, Y.; Terauchi, K.; Terzic, T.; Teshima, M.; Tluczykont, M.; Toennis, C.; Tokanai, F.; Torres D., F.; Travnicek, P.; Tutone, A.; Vacula, M.; van Scherpenberg, J.; Vázquez Acosta, M.; Ventura, S.; Vercellone, S.; Verna, G.; Viale, I.; Vigliano, A.; Vigorito C., F.; Visentin, E.; Vitale, V.; Voitsekhovskyi, V.; Voutsinas, G.; Vovk, I.; Vuillaume, T.; Walter, R.; Wan, L.; Will, M.; Wójtowicz, J.; Yamamoto, T.; Yamazaki, R.; Yao, Y.; Yeung P. K., H.; Yoshida, T.; Yoshikoshi, T.; Zhang, W.; Zywucka, N.
Kustantaja: EDP Sciences
Kustannuspaikka: LES ULIS CEDEX A
Julkaisuvuosi: 2025
Journal: Astronomy and Astrophysics
Tietokannassa oleva lehden nimi: Astronomy & Astrophysics
Lehden akronyymi: ASTRON ASTROPHYS
Artikkelin numero: A152
Vuosikerta: 695
Sivujen määrä: 18
ISSN: 0004-6361
eISSN: 1432-0746
DOI: https://doi.org/10.1051/0004-6361/202452447
Verkko-osoite: https://doi.org/10.1051/0004-6361/202452447
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/491849958
Context. The recurrent nova RS Ophiuchi (RS Oph) underwent a thermonuclear eruption in August 2021. In this event, RS Oph was detected by the High Energy Stereoscopic System (H.E.S.S.), the Major Atmospheric Gamma Imaging Cherenkov (MAGIC), and the first Large-Sized Telescope (LST-1) of the future Cherenkov Telescope Array Observatory (CTAO) at very-high gamma-ray energies above 100 GeV. This means that novae are a new class of very-high-energy (VHE) gamma-ray emitters.
Aims. We report the analysis of the RS Oph observations with LST-1. We constrain the particle population that causes the observed emission in hadronic and leptonic scenarios. Additionally, we study the prospects of detecting further novae using LST-1 and the upcoming LST array of CTAO-North.
Methods. We conducted target-of-opportunity observations with LST-1 from the first day of this nova event. The data were analysed in the framework of cta-lstchain and Gammapy, the official CTAO-LST reconstruction and analysis packages. One-zone hadronic and leptonic models were considered to model the gamma-ray emission of RS Oph using the spectral information from Fermi-LAT and LST-1, together with public data from the MAGIC and H.E.S.S. telescopes.
Results. RS Oph was detected at 6.6 sigma with LST-1 in the first 6.35 hours of observations following the eruption. The hadronic scenario is preferred over the leptonic scenario considering a proton energy spectrum with a power-law model with an exponential cuto ff whose position increases from (0.26 +/- 0.08) TeV on day 1 up to (1.6 +/- 0.6) TeV on day 4 after the eruption. The deep sensitivity and low energy threshold of the LST-1 /LST array will allow us to detect faint novae and increase their discovery rate.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
We gratefully acknowledge financial support from the following agencies and organisations: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Fundação de Apoio à Ciência, Tecnologia e Inovação do Paraná – Fundação Araucária, Ministry of Science, Technology, Innovations and Communications (MCTIC), Brasil; Ministry of Education and Science, National RI Roadmap Project DO1-153/28.08.2018, Bulgaria; Croatian Science Foundation, Rudjer Boskovic Institute, University of Osijek, University of Rijeka, University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia; Ministry of Education, Youth and Sports, MEYS LM2023047, EU/MEYS CZ.02.1.01/0.0/0.0/16_013/0001403, CZ.02.1.01/0.0/0.0/18_046/0016007, CZ.02.1.01/0.0/0.0/16_019/0000754, CZ.02.01.01/00/22_008/0004632 and CZ.02.01.01/00/23_015/0008197 Czech Republic; CNRS-IN2P3, the French Programme d’investissements d’avenir and the Enigmass Labex, This work has been done thanks to the facilities offered by the Univ. Savoie Mont Blanc – CNRS/IN2P3 MUST computing center, France; Max Planck Society, German Bundesministerium für Bildung und Forschung (Verbundforschung / ErUM), Deutsche Forschungsgemeinschaft (SFBs 876 and 1491), Germany; Istituto Nazionale di Astrofisica (INAF), Istituto Nazionale di Fisica Nucleare (INFN), Italian Ministry for University and Research (MUR), and the financial support from the European Union – Next Generation EU under the project IR0000012 – CTA+ (CUP C53C22000430006), announcement N.3264 on 28/12/2021: “Rafforzamento e creazione di IR nell’ambito del Piano Nazionale di Ripresa e Resilienza (PNRR)”; ICRR, University of Tokyo, JSPS, MEXT, Japan; JST SPRING – JPMJSP2108; Narodowe Centrum Nauki, grant number 2019/34/E/ST9/00224, Poland; The Spanish groups acknowledge the Spanish Ministry of Science and Innovation and the Spanish Research State Agency (AEI) through the government budget lines PGE2021/28.06.000X.411.01, PGE2022/28.06.000X.411.01 and PGE2022/28.06.000X.711.04, and grants PID2022-139117NB-C44, PID2019-104114RB-C31, PID2019-107847RB-C44, PID2019-104114RB-C32, PID2019-105510GB-C31, PID2019-104114RB-C33, PID2019-107847RB-C41, PID2019-107847RB-C43, PID2019-107847RB-C42, PID2019-107988GB-C22, PID2021-124581OB-I00, PID2021-125331NB-I00, PID2022-136828NB-C41, PID2022-137810NB-C22, PID2022-138172NB-C41, PID2022-138172NB-C42, PID2022-138172NB-C43, PID2022-139117NB-C41, PID2022-139117NB-C42, PID2022-139117NB-C43, PID2022-139117NB-C44, PID2022-136828NB-C42 funded by the Spanish MCIN/AEI/ 10.13039/501100011033 and “ERDF A way of making Europe; the “Centro de Excelencia Severo Ochoa” program through grants no. CEX2019-000920-S, CEX2020-001007-S, CEX2021-001131-S; the “Unidad de Excelencia María de Maeztu” program through grants no. CEX2019-000918-M, CEX2020-001058-M; the “Ramón y Cajal” program through grants RYC2021-032991-I funded by MICIN/AEI/10.13039/501100011033 and the European Union “NextGenerationEU”/PRTR; RYC2021-032552-I and RYC2020-028639-I; the “Juan de la Cierva-Incorporación” program through grant no. IJC2019-040315-I and “Juan de la Cierva-formación”’ through grant JDC2022-049705-I. They also acknowledge the “Atracción de Talento” program of Comunidad de Madrid through grant no. 2019-T2/TIC-12900; the project “Tecnologiás avanzadas para la exploracioń del universo y sus componentes” (PR47/21 TAU), funded by Comunidad de Madrid, by the Recovery, Transformation and Resilience Plan from the Spanish State, and by NextGenerationEU from the European Union through the Recovery and Resilience Facility; the La Caixa Banking Foundation, grant no. LCF/BQ/PI21/11830030; Junta de Andalucía under Plan Complementario de I+D+I (Ref. AST22_0001) and Plan Andaluz de Investigación, Desarrollo e Innovación as research group FQM-322; “Programa Operativo de Crecimiento Inteligente” FEDER 2014-2020 (Ref. ESFRI-2017-IAC-12), Ministerio de Ciencia e Innovación, 15% co-financed by Consejería de Economía, Industria, Comercio y Conocimiento del Gobierno de Canarias; the “CERCA” program and the grants 2021SGR00426 and 2021SGR00679, all funded by the Generalitat de Catalunya; and the European Union’s “Horizon 2020” GA:824064 and NextGenerationEU (PRTR-C17.I1). This research used the computing and storage resources provided by the Port d’Informació Científica (PIC) data center. State Secretariat for Education, Research and Innovation (SERI) and Swiss National Science Foundation (SNSF), Switzerland; The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreements No 262053 and No 317446; This project is receiving funding from the European Union’s Horizon 2020 research and innovation programs under agreement No 676134; ESCAPE – The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement no. 824064. This work was conducted in the context of the CTA Consortium. This paper has gone through internal review by the CTA Consortium. Author contribution: A. Aguasca-Cabot: project coordination, LST-1 data analysis, model fitting, paper drafting and edition; M. I. Bernardos: Fermi-LAT and LST-1 data analysis; P. Bordas: discussion of model fitting and results; D. Green: project coordination; Y. Kobayashi: LST-1 data analysis; R. López-Coto: project coordination; M. Ribó: discussion of model fitting and results; J. Sitarek: model-fitting codes and edition of the discussion section. All these authors have participated in the paper drafting. The rest of the authors have contributed in one or several of the following ways: design, construction, maintenance and operation of the instrument(s) used to acquire the data; preparation and/or evaluation of the observation proposals; data acquisition, processing, calibration and/or reduction; production of analysis tools and/or related Monte Carlo simulations; discussion and approval of the contents of the draft.