A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

One-to-one correspondences between discrete multivariate stationary, self-similar, and stationary increment fields




TekijätVoutilainen, Marko; Peltonen, Valtteri

KustantajaInforma UK Limited

KustannuspaikkaPHILADELPHIA

Julkaisuvuosi2025

JournalStochastic Models

Tietokannassa oleva lehden nimiStochastic Models

Lehden akronyymiSTOCH MODELS

Sivujen määrä34

ISSN1532-6349

eISSN1532-4214

DOIhttps://doi.org/10.1080/15326349.2025.2485116

Verkko-osoitehttps://doi.org/10.1080/15326349.2025.2485116

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/491828145


Tiivistelmä
In this article, we consider three important classes of n-variate fields indexed by the set of N dimensional integers, namely stationary, stationary increment, and self-similar fields. We connect these classes through bijective transformations. The one-to-one correspondence between stationary and self-similar fields, where the index of self-similarity is a tuple of positive definite matrices, is given by a version of the Lamperti transformation. In addition, we introduce generalized AR(1) type equations, whose unique stationary solutions are obtained via these transformations. Last, we apply the transformations in order to construct multivariate stationary fractional Ornstein-Uhlenbeck fields of the first and second kind, including a brief simulation study of bivariate Ornstein-Uhlenbeck sheets.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-16-05 at 12:59