A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Structure and computability of preimages in the Game of Life




TekijätSalo, Ville; Törmä, Ilkka

KustantajaElsevier BV

KustannuspaikkaAMSTERDAM

Julkaisuvuosi2025

JournalTheoretical Computer Science

Tietokannassa oleva lehden nimiTheoretical Computer Science

Lehden akronyymiTHEOR COMPUT SCI

Artikkelin numero115237

Vuosikerta1042

Sivujen määrä19

ISSN0304-3975

eISSN1879-2294

DOIhttps://doi.org/10.1016/j.tcs.2025.115237

Verkko-osoitehttps://doi.org/10.1016/j.tcs.2025.115237

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/491819155


Tiivistelmä
Conway's Game of Life is a two-dimensional cellular automaton. As a dynamical system, it is well-known to be computationally universal, i.e. capable of simulating an arbitrary Turing machine. We show that in a sense taking a single backwards step of the Game of Life is a computationally universal process, by constructing patterns whose preimage computation encodes an arbitrary circuit-satisfaction problem, or, equivalently, any tiling problem. As a corollary, we obtain for example that the set of orphans is coNP-complete, exhibit a 6210 x 37800-periodic configuration whose preimage is nonempty but contains no periodic configurations, and prove that the existence of a preimage for a periodic point is undecidable. Our constructions were obtained by a combination of computer searches and manual design.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-14-05 at 11:38