A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Bounded variation spaces with generalized Orlicz growth related to image denoising
Tekijät: Eleuteri, Michela; Harjulehto, Petteri; Hästö, Peter
Kustantaja: Springer Science and Business Media LLC
Kustannuspaikka: HEIDELBERG
Julkaisuvuosi: 2025
Journal: Mathematische Zeitschrift
Tietokannassa oleva lehden nimi: Mathematische Zeitschrift
Lehden akronyymi: MATH Z
Artikkelin numero: 26
Vuosikerta: 310
Numero: 2
Sivujen määrä: 28
ISSN: 0025-5874
eISSN: 1432-1823
DOI: https://doi.org/10.1007/s00209-025-03731-9
Verkko-osoite: https://doi.org/10.1007/s00209-025-03731-9
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/491742249
Motivated by the image denoising problem and the undesirable stair-casing effect of the total variation method, we introduce bounded variation spaces with generalized Orlicz growth. Our setup covers earlier variable exponent and double phase models. We study the norm and modular of the new space and derive a formula for the modular in terms of the Lebesgue decomposition of the derivative measure and a location dependent recession function. We also show that the modular can be obtained as the Γ-limit of uniformly convex approximating energies.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
Open Access funding provided by University of Helsinki (including Helsinki University Central
Hospital).