A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

On a Tight Bound for the Maximum Number of Vertices that Belong to Every Metric Basis




TekijätHakanen, Anni; Junnila, Ville; Laihonen, Tero; Miikonen, Havu; Yero, Ismael G.

ToimittajaGaur, Daya; Mathew, Rogers

Konferenssin vakiintunut nimiConference on Algorithms and Discrete Applied Mathematics

KustantajaSpringer Nature Switzerland

Julkaisuvuosi2025

JournalLecture Notes in Computer Science

Kokoomateoksen nimiAlgorithms and Discrete Applied Mathematics: 11th International Conference, CALDAM 2025, Coimbatore, India, February 13–15, 2025, Proceedings

Tietokannassa oleva lehden nimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Vuosikerta15536

Aloitussivu173

Lopetussivu184

ISBN978-3-031-83437-0

eISBN978-3-031-83438-7

ISSN0302-9743

eISSN1611-3349

DOIhttps://doi.org/10.1007/978-3-031-83438-7_15

Verkko-osoitehttps://doi.org/10.1007/978-3-031-83438-7_15

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/491723438


Tiivistelmä
Metric bases of graphs have been widely studied since their introduction in the 1970’s by Slater and, independently, by Harary and Melter. In this paper, we concentrate on the existence of vertices in a graph G that belong to all metric bases of G. We call these basis forced vertices, and denote the number of them by bf(G). We show that bf(G)≤2/3(n-k-1) for any connected nontrivial graph G of order n having k vertices in each metric basis. In addition, we show that this bound can be attained. Furthermore, the previous result implies the bound bf(G)≤2/5(n-1) formulated in terms of the order n of the graph for any nontrivial connected graph G. This result answers a question posed by Bagheri et al. in 2016. Moreover, we provide some realization results and consider some extremal cases related to basis forced vertices in a graph.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
Ismael G. Yero has been partially supported by the Spanish Ministry of Science and Innovation through the grant PID2023-146643NB-I00. Ville Junnila, Tero Laihonen and Havu Miikonen have been partially supported by Academy of Finland grant number 338797. Anni Hakanen was supported by Turku Collegium for Science, Medicine and Technology (TCSMT).


Last updated on 2025-28-05 at 12:18