A1 Refereed original research article in a scientific journal
Euclid preparation: LVI. Sensitivity to non-standard particle dark matter models
Authors: Lesgourgues, J.; Schwagereit, J.; Bucko, J.; Parimbelli, G.; Giri, S. K.; Hervas-Peters, F.; Schneider, A.; Archidiacono, M.; Pace, F.; Sakr, Z.; Amara, A.; Amendola, L.; Andreon, S.; Auricchio, N.; Aussel, H.; Baldi, M.; Bardelli, S.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Camera, S.; Capobianco, V.; Carbone, C.; Cardone, V. F.; Carretero, J.; Casas, S.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Courbin, F.; Courtois, H. M.; Da Silva, A.; Degaudenzi, H.; Di Giorgio, A. M.; Douspis, M.; Dubath, F.; Dupac, X.; Dusini, S.; Farina, M.; Farrens, S.; Ferriol, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Fumana, M.; Galeotta, S.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Guzzo, L.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.; Hook, I.; Hormuth, F.; Hornstrup, A.; Jahnke, K.; Joachimi, B.; Keihänen, E.; Kermiche, S.; Kiessling, A.; Kubik, B.; Kunz, M.; Kurki-Suonio, H.; Laureijs, R.; Ligori, S.; Lilje, P. B.; Lindholm, V.; Lloro, I.; Maino, D.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Martinet, N.; Marulli, F.; Massey, R.; Medinaceli, E.; Mei, S.; Mellier, Y.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Nakajima, R.; Niemi, S.-M.; Nightingale, J. W.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.; Pettorino, V.; Polenta, G.; Poncet, M.; Popa, L. A.; Raison, F.; Rebolo, R.; Renzi, A.; Rhodes, J.; Riccio, G.; Romelli, E.; Roncarelli, M.; Saglia, R.; Sapone, D.; Sartoris, B.; Scaramella, R.; Schneider, P.; Schrabback, T.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Tallada-Crespí, P.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valenziano, L.; Vassallo, T.; Veropalumbo, A.; Wang, Y.; Weller, J.; Zamorani, G.; Zucca, E.; Biviano, A.; Boucaud, A.; Bozzo, E.; Burigana, C.; Calabrese, M.; Colodro-Conde, C.; De Lucia, G.; Di Ferdinando, D.; Escartin Vigo, J. A.; Fabbian, G.; Farinelli, R.; Gracia-Carpio, J.; Ilić, S.; Mainetti, G.; Martinelli, M.; Mauri, N.; Neissner, C.; Nucita, A. A.; Scottez, V.; Tenti, M.; Viel, M.; Wiesmann, M.; Akrami, Y.; Anselmi, S.; Baccigalupi, C.; Ballardini, M.; Bertacca, D.; Blot, L.; Böhringer, H.; Borgani, S.; Bruton, S.; Cabanac, R.; Calabro, A.; Cappi, A.; Carvalho, C. S.; Castignani, G.; Castro, T.; Chambers, K. C.; Contarini, S.; Cooray, A. R.; Davini, S.; De Caro, B.; de la Torre, S.; Desprez, G.; Díaz-Sánchez, A.; Di Domizio, S.; Dole, H.; Escoffier, S.; Ferrari, A. G.; Ferreira, P. G.; Ferrero, I.; Finelli, F.; Fornari, F.; Gabarra, L.; Ganga, K.; García-Bellido, J.; Gaztanaga, E.; Giacomini, F.; Gozaliasl, G.; Hildebrandt, H.; Hjorth, J.; Jimenez Munñoz, A.; Joudaki, S.; Kajava, J. J. E.; Kansal, V.; Karagiannis, D.; Kirkpatrick, C. C.; Legrand, L.; Libet, G.; Loureiro, A.; Macias-Perez, J.; Maggio, G.; Magliocchetti, M.; Mannucci, F.; Maoli, R.; Martins, C. J. A. P.; Matthew, S.; Maurin, L.; Metcalf, R. B.; Migliaccio, M.; Monaco, P.; Moretti, C.; Morgante, G.; Nadathur, S.; Walton, N. A.; Patrizii, L.; Pezzotta, A.; Pöntinen, M.; Popa, V.; Porciani, C.; Potter, D.; Reimberg, P.; Risso, I.; Rocci, P.-F.; Sahlén, M.; Sánchez, A. G.; Schewtschenko, J. A.; Sefusatti, E.; Sereno, M.; Simon, P.; Spurio Mancini, A.; Steinwagner, J.; Tao, C.; Tessore, N.; Testera, G.; Teyssier, R.; Toft, S.; Tosi, S.; Troja, A.; Tucci, M.; Valieri, C.; Valiviita, J.; Vergani, D.; Verza, G.; Euclid Collaboration
Publisher: EDP Sciences
Publication year: 2025
Journal: Astronomy and Astrophysics
Journal name in source: Astronomy & Astrophysics
Article number: A249
Volume: 693
ISSN: 0004-6361
eISSN: 1432-0746
DOI: https://doi.org/10.1051/0004-6361/202451611
Web address : https://doi.org/10.1051/0004-6361/202451611
Self-archived copy’s web address: https://research.utu.fi/converis/portal/detail/Publication/491418519
The Euclid mission of the European Space Agency will provide weak gravitational lensing and galaxy clustering surveys that can be used to constrain the standard cosmological model and its extensions, with an opportunity to test the properties of dark matter beyond the minimal cold dark matter paradigm. We present forecasts from the combination of the Euclid weak lensing and photometric galaxy clustering data on the parameters describing four interesting and representative non-minimal dark matter models: a mixture of cold and warm dark matter relics; unstable dark matter decaying either into massless or massive relics; and dark matter undergoing feeble interactions with relativistic relics. We modelled these scenarios at the level of the non-linear matter power spectrum using emulators trained on dedicated N-body simulations. We used a mock Euclid likelihood and Monte Carlo Markov chains to fit mock data and infer error bars on dark matter parameters marginalised over other parameters. We find that the Euclid photometric probe (alone or in combination with cosmic microwave background data from the Planck satellite) will be sensitive to the effect of each of the four dark matter models considered here. The improvement will be particularly spectacular for decaying and interacting dark matter models. With Euclid, the bounds on some dark matter parameters can improve by up to two orders of magnitude compared to current limits. We discuss the dependence of predicted uncertainties on different assumptions: the inclusion of photometric galaxy clustering data, the minimum angular scale taken into account, and modelling of baryonic feedback effects. We conclude that the Euclid mission will be able to measure quantities related to the dark sector of particle physics with unprecedented sensitivity. This will provide important information for model building in high-energy physics. Any hint of a deviation from the minimal cold dark matter paradigm would have profound implications for cosmology and particle physics.
Downloadable publication This is an electronic reprint of the original article. |
Funding information in the publication:
We acknowledge computing resources granted by RWTH Aachen University under project thes1340, rwth1411, rwth1437, and rwth1481. We also acknowledge funding from DFG project 456622116 and support from the IRAP and IN2P3 Lyon computing centers. The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Agenzia Spaziale Italiana, the Austrian Forschungsförderungsgesellschaft funded through BMK, the Belgian Science Policy, the Canadian Euclid Consortium, the Deutsches Zentrum für Luft-und Raumfahrt, the DTU Space and the Niels Bohr Institute in Denmark, the French Centre National d’Etudes Spatiales, the Fundação para a Ciência e a Tecnologia, the Hungarian Academy of Sciences, the Ministerio de Ciencia, Innovación y Universidades, the National Aeronautics and Space Administration, the National Astronomical Observatory of 1930 Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Research Council of Finland, the Romanian Space Agency, the State Secretariat for Education, Research, and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on 1935 the Euclid web site (https://www.euclid-ec.org/).