A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Euclid preparation LIV. Sensitivity to neutrino parameters
Tekijät: Archidiacono, M.; Lesgourgues, J.; Casas, S.; Pamuk, S.; Schoneberg, N.; Sakr, Z.; Parimbelli, G.; Schoeneider, A.; Peters, F. Hervas; Pace, F.; Sabarish, V. M.; Costanzi, M.; Camera, S.; Carbone, C.; Clesse, S.; Frusciante, N.; Fumagalli, A.; Monaco, P.; Scott, D.; Viel, M.; Amara, A.; Andreon, S.; Auricchio, N.; Baldi, M.; Bardelli, S.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brescia, M.; Brinchmann, J.; Capobianco, V.; Cardone, V. F.; Carretero, J.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Congedo, G.; Conselice, C. J.; Conversi, L.; Copin, Y.; Courbin, F.; Courtois, H. M.; Da Silva, A.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Ealet, A.; Farina, M.; Farrens, S.; Ferriol, S.; Frailis, M.; Franceschi, E.; Galeotta, S.; Gillis, B.; Giocoli, C.; Grazian, A.; Grupp, F.; Guzzo, L.; Haugan, S. V. H.; Hoekstra, H.; Hormuth, F.; Hornstrup, A.; Jahnke, K.; Joachimi, B.; Keihanen, E.; Kermiche, S.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kubik, B.; Kunz, M.; Kurki-Suonio, H.; Ligori, S.; Lilje, P. B.; Lindholm, V.; Lloro, I.; Maino, D.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Markovic, K.; Martinet, N.; Marulli, F.; Massey, R.; Maurogordato, S.; McCracken, H. J.; Medinaceli, E.; Mei, S.; Mellier, Y.; Meneghetti, M.; Merlin, E.; Meylan, G.; Moresco, M.; Moscardini, L.; Munari, E.; Niemi, S. -M.; Nightingale, J. W.; Padilla, C.; Paltani, S.; Pasian, F.; Pedersen, K.; Percival, W. J.; Pettorino, V.; Pires, S.; Polenta, G.; Poncet, M.; Popa, L. A.; Pozzetti, L.; Raison, F.; Rebolo, R.; Renzi, A.; Rhodes, J.; Riccio, G.; Romelli, E.; Roncarelli, M.; Saglia, R.; Sapone, D.; Sartoris, B.; Scaramella, R.; Schirmer, M.; Schneider, P.; Schrabback, T.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Stanco, L.; Tallada-Crespi, P.; Taylor, A. N.; Tereno, I.; Toledo-Moreo, R.; Torradeflot, F.; Tutusaus, I.; Valenziano, L.; Vassallo, T.; Veropalumbo, A.; Wang, Y.; Weller, J.; Zamorani, G.; Zoubian, J.; Zucca, E.; Biviano, A.; Boucaud, A.; Bozzo, E.; Burigana, C.; Calabrese, M.; Colodro-Conde, C.; Crocce, M.; Fabbian, G.; Gracia-Carpio, J.; Mainetti, G.; Martinelli, M.; Mauri, N.; Neissner, C.; Scottez, V.; Tenti, M.; Wiesmann, M.; Akrami, Y.; Anselmi, S.; Baccigalupi, C.; Ballardini, M.; Bernardeau, F.; Bertacca, D.; Borgani, S.; Borsato, E.; Bruton, S.; Cabanac, R.; Cappi, A.; Carvalho, C. S.; Castignani, G.; Castro, T.; Canas-Herrera, G.; Chambers, K. C.; Contarini, S.; Cooray, A. R.; Coupon, J.; Davini, S.; de la Torre, S.; De Lucia, G.; Desprez, G.; Di Domizio, S.; Diaz-Sanchez, A.; Vigo, J. A. Escartin; Escoffier, S.; Ferreira, P. G.; Ferrero, I.; Finelli, F.; Gabarra, L.; Ganga, K.; Garcia-Bellido, J.; Gaztanaga, E.; Giacomini, F.; Gozaliasl, G.; Gregorio, A.; Hall, A.; Hildebrandt, H.; Ilic, S.; Kajava, J. J. E.; Kansal, V.; Karagiannis, D.; Kirkpatrick, C. C.; Legrand, L.; Loureiro, A.; Macias-Perez, J.; Maggio, G.; Magliocchetti, M.; Mannucci, F.; Maoli, R.; Martins, C. J. A. P.; Matthew, S.; Maurin, L.; Metcalf, R. B.; Migliaccio, M.; Morgante, G.; Nadathur, S.; Walton, Nicholas A.; Patrizii, L.; Pezzotta, A.; Pontinen, M.; Popa, V.; Porciani, C.; Potter, D.; Reimberg, P.; Risso, I.; Rocci, P. -F.; Sahlen, M.; Sanchez, A. G.; Sefusatti, E.; Sereno, M.; Simon, P.; Mancini, A. Spurio; Steinwagner, J.; Testera, G.; Tewes, M.; Teyssier, R.; Toft, S.; Tosi, S.; Troja, A.; Tucci, M.; Valieri, C.; Valiviita, J.; Vergani, D.; Verza, G.; Vielzeuf, P.; Euclid Collaboration
Kustantaja: EDP Sciences
Kustannuspaikka: LES ULIS CEDEX A
Julkaisuvuosi: 2025
Journal: Astronomy and Astrophysics
Tietokannassa oleva lehden nimi: Astronomy & Astrophysics
Lehden akronyymi: ASTRON ASTROPHYS
Artikkelin numero: A58
Vuosikerta: 693
Sivujen määrä: 36
ISSN: 0004-6361
eISSN: 1432-0746
DOI: https://doi.org/10.1051/0004-6361/202450859
Verkko-osoite: https://doi.org/10.1051/0004-6361/202450859
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/491416149
Context. The Euclid mission of the European Space Agency will deliver weak gravitational lensing and galaxy clustering surveys that can be used to constrain the standard cosmological model and extensions thereof.
Aims. We present forecasts from the combination of the Euclid photometric galaxy surveys (weak lensing, galaxy clustering, and their crosscorrelations) and its spectroscopic redshift survey with respect to their sensitivity to cosmological parameters. We include the summed neutrino mass, Sigma m (v), and the e ffective number of relativistic species, N-e ff, in the standard Lambda alpha CDM scenario and in the dynamical dark energy (w (0) w(alpha)CDM) scenario.
Methods. We compared the accuracy of di fferent algorithms predicting the non-linear matter power spectrum for such models. We then validated several pipelines for Fisher matrix and Markov chain Monte Carlo (MCMC) forecasts, using di fferent theory codes, algorithms for numerical derivatives, and assumptions on the non-linear cut-o ff scale.
Results. The Euclid primary probes alone will reach a sensitivity of sigma(Sigma m (v) = 60 meV) = 56 meV in the Lambda CDM +Sigma m (v) model, whereas the combination with cosmic microwave background (CMB) data from Planck is expected to achieve sigma(Sigma m (v)) = 23 meV, o ffering evidence of a non-zero neutrino mass to at least the 2:6 sigma level. This could be pushed to a 4 sigma detection if future CMB data from LiteBIRD and CMB Stage-IV were included. In combination with Planck, Euclid will also deliver tight constraints on Delta N-e ff < 0:144 (95%CL) in the Lambda CDM +Sigma m (v)+N-e ff model or even Delta N-e ff < 0:063 when future CMB data are included. When floating the dark energy parameters, we find that the sensitivity to Ne ff remains stable, but for Sigma m (v), it gets degraded by up to a factor of 2, at most.
Conclusions. This work illustrates the complementarity among the Euclid spectroscopic and photometric surveys and among Euclid and CMB constraints. Euclid will o ffer great potential in measuring the neutrino mass and excluding well-motivated scenarios with additional relativistic particles.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Agenzia Spaziale Italiana, the Austrian Forschungsförderungsgesellschaft funded through BMK, the Belgian Science Policy, the Canadian Euclid Consortium, the Deutsches Zentrum für Luft-und Raumfahrt, the DTU Space and the Niels Bohr Institute in Denmark, the French Centre National d’Etudes Spatiales, the Fundação para a Ciência e a Tecnologia, the Hungarian Academy of Sciences, the Ministerio de Ciencia, Innovación y Universidades, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Research Council of Finland, the Romanian Space Agency, the State Secretariat for Education, Research, and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (https://www.euclid-ec.org). We warmly thank Julien Bel for providing matter power spectra measurements from the DEMNUni simulations. N.F. is supported by the Italian Ministry of University and Research (MUR) through Rita Levi Montalcini project “Tests of gravity at cosmological scales” with reference PGR19ILFGP. N.F. and F.P. also acknowledge the FCT project with ref. number PTDC/FIS-AST/0054/2021. F.P. acknowledges partial support from the INFN grant InDark and the Departments of Excellence grant L.232/2016 of the Italian Ministry of University and Research (MUR). S.P.’s simulations were performed with computing resources granted by RWTH Aachen University under project thes1329. Z.S. acknowledges funding from DFG project 456622116 and support from the IRAP and IN2P3 Lyon computing centers. N.S. acknowledges support from the Maria de Maetzu fellowship grant: CEX2019-000918-M, financiado por MCIN/AEI/10.13039/501100011033. The DEMNUni simulations were carried out in the framework of “The Dark Energy and Massive-Neutrino Universe” project, using the Tier-0 IBM BG/Q Fermi machine and the Tier-0 Intel OmniPath Cluster Marconi-A1 of the Centro Interuniversitario del Nord-Est per il Calcolo Elettronico (CINECA). We acknowledge a generous CPU and storage allocation by the Italian Super-Computing Resource Allocation (ISCRA) as well as from the coordination of the “Accordo Quadro MoU per lo svolgimento di attività congiunta di ricerca Nuove frontiere in Astrofisica: HPC e Data Exploration di nuova generazione”, together with storage from INFN-CNAF and INAF-IA2.