A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Characterization of the geodesic distance on infinite graphs




TekijätDovgoshey, Oleksiy

KustantajaUtilitas Mathematica Publishing

Julkaisuvuosi2025

JournalUtilitas Mathematica

Tietokannassa oleva lehden nimiUtilitas Mathematica

Vuosikerta122

Aloitussivu65

Lopetussivu80

ISSN0315-3681

DOIhttps://doi.org/10.61091/um122-05

Verkko-osoitehttps://doi.org/10.61091/um122-05

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/491310530


Tiivistelmä

Let G be a connected graph and let dG be the geodesic distance on V (G). The metric spaces
(V (G), dG) were characterized up to isometry for all finite connected G by David C. Kay and Gary
Chartrand in 1965. The main result of this paper expands this characterization on innite connected
graphs. We also prove that every metric space with integer distances between its points admits an
isometric embedding in (V (G), dG) for suitable G.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
The author was supported by grant 359772 of the Academy of Finland.


Last updated on 2025-31-03 at 12:14