A1 Refereed original research article in a scientific journal

Computational Characterization of the Dish-In-A-Dish, A High Yield Culture Platform for Endothelial Shear Stress Studies on the Orbital Shaker




AuthorsRob Driessen, Feihu Zhao, Sandra Hofmann, Carlijn Bouten, Cecilia Sahlgren, Oscar Stassen

PublisherMDPI

Publication year2020

JournalMicromachines

Journal name in sourceMICROMACHINES

Journal acronymMICROMACHINES-BASEL

Article numberARTN 552

Volume11

Issue6

Number of pages14

eISSN2072-666X

DOIhttps://doi.org/10.3390/mi11060552

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/49096620


Abstract
Endothelial cells sense and respond to shear stress. Different in vitro model systems have been used to study the cellular responses to shear stress, but these platforms do not allow studies on high numbers of cells under uniform and controllable shear stress. The annular dish, or dish-in-a-dish (DiaD), on the orbital shaker has been proposed as an accessible system to overcome these challenges. However, the influence of the DiaD design and the experimental parameters on the shear stress patterns is not known. In this study, we characterize different designs and experimental parameters (orbit size, speed and fluid height) using computational fluid dynamics. We optimize the DiaD for an atheroprotective flow, combining high shear stress levels with a low oscillatory shear index (OSI). We find that orbit size determines the DiaD design and parameters. The shear stress levels increase with increasing rotational speed and fluid height. Based on our optimization, we experimentally compare the 134/56 DiaD with regular dishes for cellular alignment and KLF2, eNOS, CDH2 and MCP1 expression. The calculated OSI has a strong impact on alignment and gene expression, emphasizing the importance of characterizing shear profiles in orbital setups.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 12:24