A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Hardness results for constant-free pattern languages and word equations




TekijätAleksi Saarela

ToimittajaArtur Czumaj, Anuj Dawar, Emanuela Merelli

Konferenssin vakiintunut nimiInternational Colloquium on Automata, Languages, and Programming

KustantajaSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

Julkaisuvuosi2020

JournalLIPICS – Leibniz international proceedings in informatics

Kokoomateoksen nimi47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)

Tietokannassa oleva lehden nimiLeibniz International Proceedings in Informatics, LIPIcs

Sarjan nimiLeibniz International Proceedings in Informatics (LIPIcs)

Vuosikerta168

Aloitussivu140:1

Lopetussivu140:15

ISBN978-3-95977-138-2

ISSN1868-8969

DOIhttps://doi.org/10.4230/LIPIcs.ICALP.2020.140

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/48671620


Tiivistelmä

We
study constant-free versions of the inclusion problem of pattern
languages and the satisfiability problem of word equations. The
inclusion problem of pattern languages is known to be undecidable for
both erasing and nonerasing pattern languages, but decidable for
constant-free erasing pattern languages. We prove that it is undecidable
for constant-free nonerasing pattern languages. The satisfiability
problem of word equations is known to be in PSPACE and NP-hard. We prove
that the nonperiodic satisfiability problem of constant-free word
equations is NP-hard. Additionally, we prove a polynomial-time reduction
from the satisfiability problem of word equations to the problem of
deciding whether a given constant-free equation has a solution morphism α
such that α(xy) ≠ α(yx) for given variables x and y.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 12:35