A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

All growth rates of abelian exponents are attained by infinite binary words




TekijätPeltomäki Jarkko, Whiteland Markus A.

ToimittajaJavier Esparza, Daniel Kráľ

Konferenssin vakiintunut nimiInternational Symposium on Mathematical Foundations of Computer Science

Julkaisuvuosi2020

JournalLIPICS – Leibniz international proceedings in informatics

Kokoomateoksen nimi45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)

Sarjan nimiLIPICS – Leibniz international proceedings in informatics

Vuosikerta170

Aloitussivu79:1

Lopetussivu79:10

ISBN978-3-95977-159-7

DOIhttps://doi.org/10.4230/LIPIcs.MFCS.2020.79

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/48627207


Tiivistelmä

We consider repetitions in infinite words by making a novel inquiry to the maximum eventual growth rate of the exponents of abelian powers occurring in an infinite word. Given an increasing, unbounded function $f\colon \N \to \R$, we construct an infinite binary word whose abelian exponents have limit superior growth rate $f$. As a consequence, we obtain that every nonnegative real number is the critical abelian exponent of some infinite binary word.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 17:20