A1 Refereed original research article in a scientific journal
Morphological, Cytogenetic, and Molecular Evidence for Introgressive Hybridization in Birch
Authors: Thorsson AeH. Th.
Publisher: Oxford University Press
Publishing place: CARY
Publication year: 2001
Journal:: Journal of Heredity
Journal name in source: Journal of Heredity
Journal acronym: J HERED
Volume: 92
Issue: 5
First page : 404
Last page: 408
Number of pages: 5
ISSN: 0022-1503
eISSN: 1465-7333
DOI: https://doi.org/10.1093/jhered/92.5.404
Web address : https://doi.org/10.1093/jhered/92.5.404
Abstract
Extensive morphological variation of tetraploid birch (Betula pubescens) in Iceland is believed to be due to gene flow from diploid dwarf birch (B. nana) by means of introgressive hybridization. A combined morphological and cytogenetic approach was used to investigate this phenomenon in two geographically separated populations of natural birch woodland in Iceland. The results not only confirmed Introgressive hybridization in birch, but also revealed bidirectional gene flow between the two species via triploid interspecific hybrids. The populations showed continuous morphological variation connecting the species, but karyotypically they consisted of only three types of plants: diploids, triploids, and tetraploids. No aneuploids were found. Some of the tetraploid plants had B. pubescens morphology as expected, but most of them had intermediate characters. Most of the diploid plants were B. nana, but some were intermediates and a few had B. pubescens morphology. The triploid plants were either Intermediates or they resembled one of the two species. Similar introgressive variation was observed among the diploid and triploid progeny of open-pollinated B. nana in a garden. Birch samples including field plants and artificial hybrids were further examined using a molecular method based on genomic Southern hybridization. The experiments verified introgression at the DNA level.
Extensive morphological variation of tetraploid birch (Betula pubescens) in Iceland is believed to be due to gene flow from diploid dwarf birch (B. nana) by means of introgressive hybridization. A combined morphological and cytogenetic approach was used to investigate this phenomenon in two geographically separated populations of natural birch woodland in Iceland. The results not only confirmed Introgressive hybridization in birch, but also revealed bidirectional gene flow between the two species via triploid interspecific hybrids. The populations showed continuous morphological variation connecting the species, but karyotypically they consisted of only three types of plants: diploids, triploids, and tetraploids. No aneuploids were found. Some of the tetraploid plants had B. pubescens morphology as expected, but most of them had intermediate characters. Most of the diploid plants were B. nana, but some were intermediates and a few had B. pubescens morphology. The triploid plants were either Intermediates or they resembled one of the two species. Similar introgressive variation was observed among the diploid and triploid progeny of open-pollinated B. nana in a garden. Birch samples including field plants and artificial hybrids were further examined using a molecular method based on genomic Southern hybridization. The experiments verified introgression at the DNA level.