A1 Refereed original research article in a scientific journal
Euclid preparation : LII. Forecast impact of super-sample covariance on 3×2pt analysis with Euclid
Subtitle: LII. Forecast impact of super-sample covariance on 3×2pt analysis with Euclid
Authors: Sciotti D.; Gouyou Beauchamps S.; Cardone V. F.; Camera S.; Tutusaus I.; Lacasa F.; Barreira A.; Bonici M.; Gorce A.; Aubert M.; Baratta P.; Upham R. E.; Carbone C.; Casas S.; Ilić S.; Martinelli M.; Sakr Z.; Schneider A.; Maoli R.; Scaramella R.; Escoffier S.; Gillard W.; Aghanim N.; Amara A.; Andreon S.; Auricchio N.; Baccigalupi C.; Baldi M.; Bardelli S.; Bernardeau F.; Bonino D.; Branchini E.; Brescia M.; Brinchmann J.; Capobianco V.; Carretero J.; Castander F. J.; Castellano M.; Castignani G.; Cavuoti S.; Cimatti A.; Cledassou R.; Colodro-Conde C.; Congedo G.; Conselice C. J.; Conversi L.; Copin Y.; Corcione L.; Courbin F.; Courtois H. M.; Cropper M.; Da Silva A.; Degaudenzi H.; De Lucia G.; Dinis J.; Dubath F.; Dupac X.; Dusini S.; Farina M.; Farrens S.; Fosalba P.; Frailis M.; Franceschi E.; Fumana M.; Galeotta S.; Garilli B.; Gillis B.; Giocoli C.; Grazian A.; Grupp F.; Guzzo L.; Haugan S. V. H.; Holmes W.; Hook I.; Hormuth F.; Hornstrup A.; Hudelot P.; Jahnke K.; Joachimi B.; Keihänen E.; Kermiche S.; Kiessling A.; Kunz M.; Kurki-Suonio H.; Lilje P. B.; Lindholm V.; Lloro I.; Mainetti G.; Maino D.; Mansutti O.; Marggraf O.; Markovic K.; Martinet N.; Marulli F.; Massey R.; Maurogordato S.; Medinaceli E.; Mei S.; Mellier Y.; Meneghetti M.; Meylan G.; Moresco M.; Moscardini L.; Munari E.; Neissner C.; Niemi S.-M.; Padilla C.; Paltani S.; Pasian F.; Pedersen K.; Pettorino V.; Pires S.; Polenta G.; Poncet M.; Popa L. A.; Raison F.; Rebolo R.; Renzi A.; Rhodes J.; Riccio G.; Romelli E.; Roncarelli M.; Saglia R.; Sánchez A. G.; Sapone D.; Sartoris B.; Schirmer M.; Schneider P.; Secroun A.; Sefusatti E.; Seidel G.; Serrano S.; Sirignano C.; Sirri G.; Stanco L.; Starck J.-L.; Steinwagner J.; Tallada-Crespí P.; Taylor A. N.; Tereno I.; Toledo-Moreo R.; Torradeflot F.; Valentijn E. A.; Valenziano L.; Vassallo T.; Veropalumbo A.; Wang Y.; Weller J.; Zacchei A.; Zamorani G.; Zoubian J.; Zucca E.; Biviano A.; Boucaud A.; Bozzo E.; Di Ferdinando D.; Farinelli R.; Graciá-Carpio J.; Mauri N.; Scottez V.; Tenti M.; Akrami Y.; Allevato V.; Ballardini M.; Blanchard A.; Borgani S.; Borlaff A. S.; Burigana C.; Cabanac R.; Cappi A.; Carvalho C. S.; Castro T.; Cañas-Herrera G.; Chambers K. C.; Cooray A. R.; Coupon J.; Davini S.; Desprez G.; Díaz-Sánchez A.; Di Domizio S.; Escartin Vigo J. A.; Ferrero I.; Finelli F.; Gabarra L.; Ganga K.; Garcia-Bellido J.; Gaztanaga E.; Giacomini F.; Gozaliasl G.; Hildebrandt H.; Jacobson J.; Kajava J. J. E.; Kansal V.; Kirkpatrick C. C.; Legrand L.; Loureiro A.; Macias-Perez J.; Magliocchetti M.; Martins C. J. A. P.; Matthew S.; Maurin L.; Metcalf R. B.; Migliaccio M.; Monaco P.; Morgante G.; Nadathur S.; Nucita A. A.; Patrizii L.; Pöntinen M.; Popa V.; Porciani C.; Potter D.; Pourtsidou A.; Sereno M.; Simon P.; Spurio Mancini A.; Stadel J.; Teyssier R.; Toft S.; Tucci M.; Valieri C.; Valiviita J.; Viel M.
Publisher: EDP Sciences
Publication year: 2024
Journal: Astronomy and Astrophysics
Journal name in source: Astronomy & Astrophysics
Volume: 691
First page : A318
ISSN: 0004-6361
eISSN: 1432-0746
DOI: https://doi.org/10.1051/0004-6361/202348389
Web address : https://doi.org/10.1051/0004-6361/202348389
Self-archived copy’s web address: https://research.utu.fi/converis/portal/detail/Publication/477986127
Context. Deviations from Gaussianity in the distribution of the fields probed by large-scale structure surveys generate additional terms in the data covariance matrix, increasing the uncertainties in the measurement of the cosmological parameters. Super-sample covariance (SSC) is among the largest of these non-Gaussian contributions, with the potential to significantly degrade constraints on some of the parameters of the cosmological model under study – especially for weak-lensing cosmic shear.
Aims. We compute and validate the impact of SSC on the forecast uncertainties on the cosmological parameters for the Euclid photo-metric survey, and investigate how its impact depends on the specific details of the forecast.
Methods. We followed the recipes outlined by the Euclid Collaboration (EC) to produce 1σ constraints through a Fisher matrix analysis, considering the Gaussian covariance alone and adding the SSC term, which is computed through the public code PySSC. The constraints are produced both by using Euclid’s photometric probes in isolation and by combining them in the ‘3×2pt’ analysis.
Results. We meet EC requirements on the forecasts validation, with an agreement at the 10% level between the mean results of the two pipelines considered, and find the SSC impact to be non-negligible - halving the figure of merit (FoM) of the dark energy parameters (w0, wa) in the 3×2pt case and substantially increasing the uncertainties on Ωm,0,w0, w0, and σ8 for the weak-lensing probe. We find photometric galaxy clustering to be less affected as a consequence of the lower probe response. The relative impact of SSC, while highly dependent on the number and type of nuisance parameters varied in the analysis, does not show significant changes under variations of the redshift binning scheme. Finally, we explore how the use of prior information on the shear and galaxy bias changes the impact of SSC. We find that improving shear bias priors has no significant influence, while galaxy bias must be calibrated to a subpercent level in order to increase the FoM by the large amount needed to achieve the value when SSC is not included.
Downloadable publication This is an electronic reprint of the original article. |
Funding information in the publication:
The project leading to this publication has received funding from Excellence Initiative of Aix-Marseille University -A*MIDEX, a French “Investissements d’Avenir” programme (AMX-19-IET-008-IPhU). SC acknowledges support from the ‘Departments of Excellence 2018-2022’ Grant (L. 232/2016) awarded by the Italian Ministry of University and Research (MUR). IT acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 863929; project title “Testing the law of gravity with novel large-scale structure observables” and acknowledges support from the Spanish Ministry of Science, Innovation and Universities through grant ESP2017-89838, and the H2020 programme of the European Commission through grant 776247. The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Agenzia Spaziale Italiana, the Austrian Forschungsförderungsgesellschaft funded through BMK, the Belgian Science Policy, the Canadian Euclid Consortium, the Deutsches Zentrum für Luft- und Raumfahrt, the DTU Space and the Niels Bohr Institute in Denmark, the French Centre National d’Etudes Spatiales, the Fundação para a Ciência e a Tecnologia, the Hungarian Academy of Sciences, the Ministerio de Ciencia, Innovación y Universidades, the National Aeronautics and Space Administration, the National Astronomical Observatory of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Research Council of Finland, the Romanian Space Agency, the State Secretariat for Education, Research, and Innovation (SERI) at the Swiss Space Office (SSO),and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (www.euclid-ec.org).