A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
pyStoNED : A Python Package for Convex Regression and Frontier Estimation
Tekijät: Dai, Sheng; Fang, Yu-Hsueh; Lee, Chia-Yen; Kuosmanen, Timo
Kustantaja: Foundation for Open Access Statistics
Kustannuspaikka: LOS ANGELES
Julkaisuvuosi: 2024
Journal: Journal of Statistical Software
Tietokannassa oleva lehden nimi: JOURNAL OF STATISTICAL SOFTWARE
Lehden akronyymi: J STAT SOFTW
Vuosikerta: 111
Numero: 6
Aloitussivu: 1
Lopetussivu: 43
Sivujen määrä: 43
ISSN: 1548-7660
DOI: https://doi.org/10.18637/jss.v111.i06
Verkko-osoite: https://www.jstatsoft.org/article/view/v111i06
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/477928536
Shape-constrained nonparametric regression is a growing area in econometrics, statistics, operations research, machine learning, and related fields. In the field of productivity and efficiency analysis, recent developments in multivariate convex regression and related techniques such as convex quantile regression and convex expectile regression have bridged the long-standing gap between the conventional deterministic-nonparametric and stochastic-parametric methods. Unfortunately, the heavy computational burden and the lack of a powerful, reliable, and fully open-access computational package have slowed down the diffusion of these advanced estimation techniques to the empirical practice. The purpose of the Python package pyStoNED is to address this challenge by providing a freely available and user-friendly tool for multivariate convex regression, convex quantile velopment of data, and related methods. This paper presents a tutorial of the pyStoNED package and illustrates its application, focusing on estimating frontier cost and production functions.
Ladattava julkaisu This is an electronic reprint of the original article. |