A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Graph and wreath products of cellular automata




TekijätSalo, Ville

KustantajaWORLD SCIENTIFIC PUBL CO PTE LTD

KustannuspaikkaSINGAPORE

Julkaisuvuosi2024

JournalInternational Journal of Algebra and Computation

Tietokannassa oleva lehden nimiINTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION

Lehden akronyymiINT J ALGEBR COMPUT

Sivujen määrä31

ISSN0218-1967

eISSN1793-6500

DOIhttps://doi.org/10.1142/S0218196724500553

Verkko-osoitehttps://doi.org/10.1142/S0218196724500553


Tiivistelmä
We prove that the set of subgroups of the automorphism group of a two-sided full shift is closed under countable graph products. We introduce the notion of a group action without A-cancellation (for an abelian group A), and show that when A is a finite abelian group and G is a group of cellular automata whose action does not have A-cancellation, the wreath product A (sic) G embeds in the automorphism group of a full shift. We show that all free abelian groups and free groups admit such cellular automata actions. In the one-sided case, we prove variants of these results with reasonable alphabet blow-ups.



Last updated on 2025-27-01 at 19:37