A1 Refereed original research article in a scientific journal

Predicting Skeletal Muscle and Whole-Body Insulin Sensitivity Using NMR-Metabolomic Profiling




AuthorsKlén R, Honka MJ, Hannukainen JC, Huovinen V, Bucci M, Latva-Rasku A, Venäläinen MS, Kalliokoski KK, Virtanen KA, Lautamäki R, Iozzo P, Elo LL, Nuutila P

PublisherENDOCRINE SOC

Publication year2020

JournalJournal of the Endocrine Society

Journal name in sourceJOURNAL OF THE ENDOCRINE SOCIETY

Journal acronymJ ENDOCR SOC

Article numberUNSP bvaa026

Volume4

Issue4

Number of pages18

eISSN2472-1972

DOIhttps://doi.org/10.1210/jendso/bvaa026(external)

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/47782154(external)


Abstract
Purpose: Abnormal lipoprotein and amino acid profiles are associated with insulin resistance and may help to identify this condition. The aim of this study was to create models estimating skeletal muscle and whole-body insulin sensitivity using fasting metabolite profiles and common clinical and laboratory measures.Material and Methods: The cross-sectional study population included 259 subjects with normal or impaired fasting glucose or type 2 diabetes in whom skeletal muscle and whole-body insulin sensitivity (M-value) were measured during euglycemic hyperinsulinemic clamp. Muscle glucose uptake (GU) was measured directly using [F-18]FDG-PET. Serum metabolites were measured using nuclear magnetic resonance (NMR) spectroscopy. We used linear regression to build the models for the muscle GU (Muscle-insulin sensitivity index [ISI]) and M-value (whole-body [WB]-ISI). The models were created and tested using randomly selected training (n = 173) and test groups (n = 86). The models were compared to common fasting indices of insulin sensitivity, homeostatic model assessment-insulin resistance (HOMA-IR) and the revised quantitative insulin sensitivity check index (QUICKI).Results: WB-ISI had higher correlation with actual M-value than HOMA-IR or revised QUICKI (rho = 0.83 vs -0.67 and 0.66; P < 0.05 for both comparisons), whereas the correlation of Muscle-ISI with the actual skeletal muscle GU was not significantly stronger than HOMA-IR's or revised QUICKI's (rho = 0.67 vs -0.58 and 0.59; both nonsignificant) in the test dataset.Conclusion: Muscle-ISI and WB-ISI based on NMR-metabolomics and common laboratory measurements from fasting serum samples and basic anthropometrics are promising rapid and inexpensive tools for determining insulin sensitivity in at-risk individuals. (C) Endocrine Society 2020.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 14:46