A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Improving Latin Dependency Parsing by Combining Treebanks and Predictions
Tekijät: Kupari, Hanna-Mari Kristiina; Henriksson, Erik; Laippala, Veronika; Kanerva, Jenna
Toimittaja: Mika Hämäläinen, Emily Öhman, So Miyagawa, Khalid Alnajjar, Yuri Bizzoni
Konferenssin vakiintunut nimi: International Conference on Natural Language Processing for Digital Humanities
Julkaisuvuosi: 2024
Kokoomateoksen nimi: Proceedings of the 4th International Conference on Natural Language Processing for Digital Humanities
Aloitussivu: 216
Lopetussivu: 228
ISBN: 979-8-89176-181-0
DOI: https://doi.org/10.18653/v1/2024.nlp4dh-1.21
Verkko-osoite: https://aclanthology.org/2024.nlp4dh-1.21/
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/477149611
This paper introduces new models designed to improve the morpho-syntactic parsing of the five largest Latin treebanks in the Universal Dependencies (UD) framework. First, using two state-of-the-art parsers, Trankit and Stanza, along with our custom UD tagger, we train new models on the five treebanks both individually and by combining them into novel merged datasets. We also test the models on the CIRCSE test set. In an additional experiment, we evaluate whether this set can be accurately tagged using the novel LASLA corpus (https://github.com/CIRCSE/LASLA). Second, we aim to improve the results by combining the predictions of different models through an atomic morphological feature voting system. The results of our two main experiments demonstrate significant improvements, particularly for the smaller treebanks, with LAS scores increasing by 16.10 and 11.85%-points for UDante and Perseus, respectively (Gamba and Zeman, 2023a). Additionally, the voting system for morphological features (FEATS) brings improvements, especially for the smaller Latin treebanks: Perseus 3.15% and CIRCSE 2.47%-points. Tagging the CIRCSE set with our custom model using the LASLA model improves POS 6.71 and FEATS 11.04%-points respectively, compared to our best-performing UD PROIEL model. Our results show that larger datasets and ensemble predictions can significantly improve performance.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
The Emil Aaltonen Foundation for grant "Exploring linguistic variation in medieval Latin using computational methods" for Hanna-Mari Kupari 2022-2024