An imaging scheme to study the flow dynamics of co-flow regimes in microfluidics: implications for nanoprecipitation




Inam, Wali; Vladyka, Anton; Pylvänäinen, Joanna W.; Solis, Junel; Tokic, Dado; Kankaanpää, Pasi; Zhang, Hongbo

PublisherRoyal Society of Chemistry (RSC)

CAMBRIDGE

2024

Lab on a Chip

Lab on a Chip

LAB CHIP

24

24

5374

5383

10

1473-0197

1473-0189

DOIhttps://doi.org/10.1039/d4lc00652f

https://doi.org/10.1039/D4LC00652F

https://research.utu.fi/converis/portal/detail/Publication/471000683



Co-flow microfluidics, in addition to its applications in droplet generation, has gained popularity for use with miscible solvent systems (continuous microfluidics). By leveraging the short diffusional distances in miniature devices, processes like nanomaterial synthesis can be precisely tailored for high-throughput production. In this context, the manipulation of flow regimes-from laminar to vortex formation, as well as the generation of turbulent and turbulent jet flows-plays a significant role in optimizing these processes. Therefore, a detailed understanding of fluid interactions within microchannels is crucial. Imaging with tracer particles is a commonly used approach to study fluid behavior. Alternatively, label-free imaging methodologies are rarely employed for studying fluid dynamics. In this pursuit, we present a new imaging-based scheme to explore fluid interactions in various co-flow regimes through optical flow analysis, specifically using Gaussian window mean squared error (MSE). By examining fluid flow characteristics such as flow intensities (caused by fluctuations) and the projected movement of fluid spots, we characterize slow vortexing and chaotic flow behaviors in co-flow regimes. Consequently, we use imaging data to illustrate the influence of co-flow regimes on particle synthesis. This new tool provides the scientific community with an innovative method to study fluid interactions, which can be further explored to develop a more effective understanding of fluid mixing and optimize fluid manipulation in microfluidic devices.


This work was supported by the Research Fellow (Grant No. 353146), Project (347897), Solution for Health Profile (336355), and InFLAMES Flagship (337531) grants from Academy of Finland. Biocenter Finland Bioinformatics and Drug Discovery and Chemical Biology networks, CSC IT Center for Science, Joe, Pentti and Tor Borg Memorial Fund, S. J. foundation are acknowledged.


Last updated on 2025-24-02 at 13:51