A1 Refereed original research article in a scientific journal

Urine microRNA Profiling Displays miR-125a Dysregulation in Children with Fragile X Syndrome




AuthorsNoora Putkonen, Asta Laiho, Doug Ethell, Juha Pursiheimo, Anna-Kaisa Anttonen, Juho Pitkonen, Adriana M. Gentile, Yolanda de Diego-Otero, Maija L. Castrén

PublisherMDPI

Publication year2020

JournalCells

Journal acronymCELLS-BASEL

Article numberARTN 289

Volume9

Issue2

Number of pages14

eISSN2073-4409

DOIhttps://doi.org/10.3390/cells9020289

Web address https://www.mdpi.com/2073-4409/9/2/289

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/47012259


Abstract
A triplet repeat expansion leading to transcriptional silencing of the FMR1 gene results in fragile X syndrome (FXS), which is a common cause of inherited intellectual disability and autism. Phenotypic variation requires personalized treatment approaches and hampers clinical trials in FXS. We searched for microRNA (miRNA) biomarkers for FXS using deep sequencing of urine and identified 28 differentially regulated miRNAs when 219 reliably identified miRNAs were compared in dizygotic twin boys who shared the same environment, but one had an FXS full mutation, and the other carried a premutation allele. The largest increase was found in miR-125a in the FXS sample, and the miR-125a levels were increased in two independent sets of urine samples from a total of 19 FXS children. Urine miR-125a levels appeared to increase with age in control subjects, but varied widely in FXS subjects. Should the results be generalized, it could suggest that two FXS subgroups existed. Predicted gene targets of the differentially regulated miRNAs are involved in molecular pathways that regulate developmental processes, homeostasis, and neuronal function. Regulation of miR-125a has been associated with type I metabotropic glutamate receptor signaling (mGluR), which has been explored as a treatment target for FXS, reinforcing the possibility that urine miR-125a may provide a novel biomarker for FXS.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:17