A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Pt Modified Heterogeneous Catalysts Combined with Ozonation for the Removal of Diclofenac from Aqueous Solutions and the Fate of by-Products




TekijätSoudabeh Saeid, Matilda Kråkström, Pasi Tolvanen, Narendra Kumar, Kari Eränen, Jyri-Pekka Mikkola, Leif Kronberg, Patrik Eklund, Atte Aho, Heikki Palonen, Markus Peurla, Andrey Shchukarev, Tapio Salmi

KustantajaMDPI

Julkaisuvuosi2020

JournalCatalysts

Lehden akronyymiCATALYSTS

Artikkelin numeroARTN 322

Vuosikerta10

Numero3

Sivujen määrä25

eISSN2073-4344

DOIhttps://doi.org/10.3390/catal10030322

Verkko-osoitehttps://www.mdpi.com/2073-4344/10/3/322

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/47009986


Tiivistelmä
The degradation of the pharmaceutical compound diclofenac in an aqueous solution was studied with an advanced oxidation method, catalytic ozonation. Diclofenac was destroyed in a few minutes by ozonation but several long-lasting degradation by-products were formed. For this reason, the combination of heterogeneous catalysts and ozonation was applied to eliminate them completely. The kinetics of the diclofenac degradation and the formation of by-products were thoroughly investigated. Loading of Pt on the catalysts resulted in an improvement of the activity. The Mesoporous Molecular Sieves (MCM) were one of the promising catalysts for the degradation of organic pollutants. In this study, six heterogeneous catalysts were screened, primarily MCM-22-100 catalysts with different Pt concentrations loaded via the evaporation-impregnation (EIM) method, and they were applied on the degradation of diclofenac. It was found that the presence of Pt improved the degradation of diclofenac and gave lower concentrations of by-products. The 2 wt % Pt-H-MCM-22-100-EIM demonstrated the highest degradation rate compared to the proton form, 1% or 5 wt % Pt concentration, i.e., an optimum was found in between. Pt-H-Y-12-IE and Pt-gamma-Al2O3 (UOP)-IMP catalysts were applied and compared with the MCM-22 structure. Upon use of both of these catalysts, an improvement in the degradation of diclofenac and by-products was observed, and the 2 wt % Pt-H-MCM-22-100-EIM illustrated the maximum activity. All important characterization methods were applied to understand the behavior of the catalysts (X-ray powder diffraction, transmission electron microscopy, nitrogen physisorption, scanning electron microscopy, energy dispersive X-ray micro-analyses, pyridine adsorption-desorption with FTIR spectroscopy, X-ray photoelectron spectroscopy). Finally, leaching of Pt and Al were analyzed by inductively coupled optical emission spectrometry.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 18:26