A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
On k-abelian equivalence and generalized Lagrange spectra
Tekijät: Peltomäki Jarkko,Whiteland Markus A.
Kustantaja: Polish Academy of Sciences
Julkaisuvuosi: 2020
Journal: Acta Arithmetica
Vuosikerta: 194
Numero: 2
Aloitussivu: 135
Lopetussivu: 154
Sivujen määrä: 20
ISSN: 0065-1036
eISSN: 1730-6264
DOI: https://doi.org/10.4064/aa180927-10-9
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/46570016
We study the set of $k$-abelian critical exponents of all Sturmian words. It has been proven that in the case $k = 1$ this set coincides with the Lagrange spectrum. Thus the sets obtained when $k > 1$ can be viewed as generalized Lagrange spectra. We characterize these generalized spectra in terms of the usual Lagrange spectrum and prove that when $k > 1$ the spectrum is a dense non-closed set. This is in contrast with the case $k = 1$, where the spectrum is a closed set containing a discrete part and a half-line. We describe explicitly the least accumulation points of the generalized spectra. Our geometric approach allows the study of $k$-abelian powers in Sturmian words by means of continued fractions.
Ladattava julkaisu This is an electronic reprint of the original article. |