A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On k-abelian equivalence and generalized Lagrange spectra




TekijätPeltomäki Jarkko,Whiteland Markus A.

KustantajaPolish Academy of Sciences

Julkaisuvuosi2020

JournalActa Arithmetica

Vuosikerta194

Numero2

Aloitussivu135

Lopetussivu154

Sivujen määrä20

ISSN0065-1036

eISSN1730-6264

DOIhttps://doi.org/10.4064/aa180927-10-9

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/46570016


Tiivistelmä

We study the set of $k$-abelian critical exponents of all Sturmian words. It has been proven that in the case $k = 1$ this set coincides with the Lagrange spectrum. Thus the sets obtained when $k > 1$ can be viewed as generalized Lagrange spectra. We characterize these generalized spectra in terms of the usual Lagrange spectrum and prove that when $k > 1$ the spectrum is a dense non-closed set. This is in contrast with the case $k = 1$, where the spectrum is a closed set containing a discrete part and a half-line. We describe explicitly the least accumulation points of the generalized spectra. Our geometric approach allows the study of $k$-abelian powers in Sturmian words by means of continued fractions.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 21:03