A1 Refereed original research article in a scientific journal

Complexity and Equivalency of Multiset Dimension and ID-colorings




AuthorsHakanen, Anni; Yero, Ismael G.

PublisherIOS PRESS

Publishing placeAMSTERDAM

Publication year2024

JournalFundamenta Informaticae

Journal acronymFUND INFORM

Volume191

Issue3-4

First page 315

Last page330

Number of pages16

ISSN0169-2968

eISSN1875-8681

DOIhttps://doi.org/10.3233/FI-242185

Web address https://content.iospress.com/articles/fundamenta-informaticae/fi242185

Preprint addresshttps://arxiv.org/pdf/2303.06986


Abstract
This investigation is firstly focused into showing that two metric parameters represent the same object in graph theory. That is, we prove that the multiset resolving sets and the ID-colorings of graphs are the same thing. We also consider some computational and combinatorial problems of the multiset dimension, or equivalently, the ID-number of graphs. We prove that the decision problem concerning finding the multiset dimension of graphs is NP-complete. We consider the multiset dimension of king grids and prove that it is bounded above by 4. We also give a characterization of the strong product graphs with one factor being a complete graph, and whose multiset dimension is not infinite.



Last updated on 2025-27-01 at 20:00