O2 Muu julkaisu
Work-in-Progress: Context and Noise Aware Resilience for Autonomous Driving Applications
Tekijät: Alikhani, Hamidreza;Kanduri, Anil; Liljeberg, Pasi; Rahmani, Amir M.; Dutt, Nikil
Toimittaja: N/A
Konferenssin vakiintunut nimi: International Conference on Hardware/Software Codesign and System Synthesis
Julkaisuvuosi: 2024
Journal: International Conference on Hardware/Software Codesign and System Synthesis
Kokoomateoksen nimi: 2024 International Conference on Hardware/Software Codesign and System Synthesis: CODES+ISSS 2024
Sarjan nimi: International Conference on Hardware/Software Codesign and System Synthesis
Aloitussivu: 6
Lopetussivu: 6
ISBN: 979-8-3503-5640-3
eISBN: 979-8-3503-5639-7
ISSN: 2832-6466
eISSN: 2832-6474
DOI: https://doi.org/10.1109/CODES-ISSS60120.2024.00010
Verkko-osoite: https://ieeexplore.ieee.org/document/10740731
Autonomous Vehicles (AVs) often use noise prone sensory data from cameras and LiDAR for perception. In specific noisy scenarios, different object detection models exhibit non-intuitive and varying degrees of resilience, necessitating adaptive model selection. In this work, we develop a context and noise aware framework for run-time adaptive configuration of objection models for high accuracy and low latency inference. We combine driving scene context and input data noise to prioritize among input modalities, followed by selection and configuration of most resilient object detection model appropriate for the context. Our evaluation for 2D object detection on nuScenes dataset provided average 1.83x speedup in latency compared to baseline while preserving average prediction confidence.