A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Modeling economies of scope in joint production: Convex regression of input distance function




TekijätKuosmanen, Timo; Dai, Sheng

KustantajaSpringer

KustannuspaikkaDORDRECHT

Julkaisuvuosi2025

JournalJournal of Productivity Analysis

Tietokannassa oleva lehden nimiJOURNAL OF PRODUCTIVITY ANALYSIS

Lehden akronyymiJ PROD ANAL

Vuosikerta63

Numero1

Aloitussivu69

Lopetussivu86

Sivujen määrä18

ISSN0895-562X

eISSN1573-0441

DOIhttps://doi.org/10.1007/s11123-024-00739-x

Verkko-osoitehttps://doi.org/10.1007/s11123-024-00739-x

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/459154642

Preprintin osoitehttps://arxiv.org/abs/2311.11637


Tiivistelmä
Modeling of joint production has proved a vexing problem. This paper develops a radial convex nonparametric least squares (CNLS) approach to estimate the input distance function with multiple outputs. We document the correct input distance function transformation and prove that the necessary orthogonality conditions can be satisfied in radial CNLS. A Monte Carlo study is performed to compare the finite sample performance of radial CNLS and other deterministic and stochastic frontier approaches in terms of the input distance function estimation. We apply our novel approach to the Finnish electricity distribution network regulation and empirically confirm that the input isoquants become more curved. In addition, we introduce the weight restriction to radial CNLS to mitigate the potential overfitting and increase the out-of-sample performance in energy regulation.


Julkaisussa olevat rahoitustiedot
Sheng Dai gratefully acknowledges financial support from the OP Group Research Foundation [grant no. 20230008] and the Turku University Foundation [grant no. 081520].


Last updated on 2025-27-03 at 13:02