A3 Vertaisarvioitu kirjan tai muun kokoomateoksen osa

Multi-Channel Sequence Analysis in Educational Research: An Introduction and Tutorial with R




TekijätLópez-Pernas, Sonsoles; Saqr, Mohammed; Helske, Satu; Murphy, Keefe

ToimittajaSaqr, M., López-Pernas, S

KustantajaSpringer Nature Switzerland

Julkaisuvuosi2024

Kokoomateoksen nimiLearning Analytics Methods and Tutorials

Aloitussivu465

LopetussivuLearning Analytics Methods and Tutorials

ISBN978-3-031-54463-7

eISBN978-3-031-54464-4

DOIhttps://doi.org/10.1007/978-3-031-54464-4_13

Verkko-osoitehttp://doi.org/10.1007/978-3-031-54464-4_13

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/459133797


Tiivistelmä

This chapter introduces multi-channel sequence analysis, a novel method that examines two or more synchronised sequences. While this approach is relatively new in social sciences, its relevance to educational research is growing as researchers gain access to diverse multimodal temporal data. Throughout this chapter, we describe multi-channel sequence analysis in detail, with an emphasis on how to detect patterns within the sequences, i.e., clusters —or trajectories— of multi-channel sequences that share similar temporal evolutions (or similar trajectories). To illustrate this method we present a step-by-step tutorial in R that analyses students’ sequences of online engagement and academic achievement, exploring their longitudinal association. We cover two approaches for clustering multi-channel sequences: one based on using distance-based algorithms, and the other employing mixture hidden Markov models inspired by recent research.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-27-01 at 19:22