A3 Vertaisarvioitu kirjan tai muun kokoomateoksen osa
Multi-Channel Sequence Analysis in Educational Research: An Introduction and Tutorial with R
Tekijät: López-Pernas, Sonsoles; Saqr, Mohammed; Helske, Satu; Murphy, Keefe
Toimittaja: Saqr, M., López-Pernas, S
Kustantaja: Springer Nature Switzerland
Julkaisuvuosi: 2024
Kokoomateoksen nimi: Learning Analytics Methods and Tutorials
Aloitussivu: 465
Lopetussivu: Learning Analytics Methods and Tutorials
ISBN: 978-3-031-54463-7
eISBN: 978-3-031-54464-4
DOI: https://doi.org/10.1007/978-3-031-54464-4_13
Verkko-osoite: http://doi.org/10.1007/978-3-031-54464-4_13
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/459133797
This chapter introduces multi-channel sequence analysis, a novel method that examines two or more synchronised sequences. While this approach is relatively new in social sciences, its relevance to educational research is growing as researchers gain access to diverse multimodal temporal data. Throughout this chapter, we describe multi-channel sequence analysis in detail, with an emphasis on how to detect patterns within the sequences, i.e., clusters —or trajectories— of multi-channel sequences that share similar temporal evolutions (or similar trajectories). To illustrate this method we present a step-by-step tutorial in R that analyses students’ sequences of online engagement and academic achievement, exploring their longitudinal association. We cover two approaches for clustering multi-channel sequences: one based on using distance-based algorithms, and the other employing mixture hidden Markov models inspired by recent research.
Ladattava julkaisu This is an electronic reprint of the original article. |