A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
CoNECo: a Corpus for Named Entity recognition and normalization of protein Complexes
Tekijät: Nastou, Katerina; Koutrouli, Mikaela; Pyysalo, Sampo; Jensen, Lars Juhl
Toimittaja: Zhu Shanfeng
Kustantaja: Oxford University Press (OUP)
Kustannuspaikka: OXFORD
Julkaisuvuosi: 2024
Journal: Bioinformatics Advances
Tietokannassa oleva lehden nimi: Bioinformatics Advances
Lehden akronyymi: BIOINFORM ADV
Artikkelin numero: vbae116
Vuosikerta: 4
Numero: 1
Sivujen määrä: 7
eISSN: 2635-0041
DOI: https://doi.org/10.1093/bioadv/vbae116
Verkko-osoite: https://doi.org/10.1093/bioadv/vbae116
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/458834899
Motivation
Despite significant progress in biomedical information extraction, there is a lack of resources for Named Entity Recognition (NER) and Named Entity Normalization (NEN) of protein-containing complexes. Current resources inadequately address the recognition of protein-containing complex names across different organisms, underscoring the crucial need for a dedicated corpus.
Results
We introduce the Complex Named Entity Corpus (CoNECo), an annotated corpus for NER and NEN of complexes. CoNECo comprises 1621 documents with 2052 entities, 1976 of which are normalized to Gene Ontology. We divided the corpus into training, development, and test sets and trained both a transformer-based and dictionary-based tagger on them. Evaluation on the test set demonstrated robust performance, with F-scores of 73.7% and 61.2%, respectively. Subsequently, we applied the best taggers for comprehensive tagging of the entire openly accessible biomedical literature.
Availability and implementation
All resources, including the annotated corpus, training data, and code, are available to the community through Zenodo https://zenodo.org/records/11263147 and GitHub https://zenodo.org/records/10693653.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
This work was supported by the Novo Nordisk Foundation [NNF14CC0001, NNF20SA0035590 to M.K.], the Academy of Finland [332844], and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie [101023676 to K.N.].