Virtual Reality Immersive Simulations for a Forensic Molecular Biology Course-A Quantitative Comparative Study
: Ewais, Ahmed; Mystakidis, Stylianos; Khalilia, Walid; Diab, Shadi; Christopoulos, Athanasios; Khasib, Said; Yahya, Baha; Hatzilygeroudis, Ioannis
Publisher: MDPI
: BASEL
: 2024
: Applied Sciences
: APPLIED SCIENCES-BASEL
: APPL SCI-BASEL
: 7513
: 14
: 17
: 18
: 2076-3417
DOI: https://doi.org/10.3390/app14177513
: https://doi.org/10.3390/app14177513
: https://research.utu.fi/converis/portal/detail/Publication/458830305
Molecular biology is a complex, abstract, subject that can be challenging for higher education students to comprehend. The current manuscript describes the design, implementation, and evaluation of two immersive VR simulations of a DNA lab and a crime scene investigation (CSI) for a forensic molecular biology course in the context of the "TESLA" Erasmus+ project. It illustrates the instructional design and technical aspects of the VR simulations' development. The experimental study employed a comparative quantitative research design. The guiding research questions examined how instructional modalities (online vs. face-to-face) affect learners' perceptions of VR-based training in higher education and the key factors influencing learners' intention for their adoption. Forty-six (n = 46) undergraduate students completed a 17-item questionnaire, which served as the main data collection instrument. Results demonstrate that both online and face-to-face VR-based instruction can effectively convey core concepts, thus challenging the traditional notion that face-to-face interaction is inherently superior. Its implications underscore the potential of VR simulations to supplement or even substitute traditional teaching methods, particularly for complex science subjects.
:
This research was funded by the European Commission, grant number 585772-epp-1-2017-1ps-eppka2-cbhe-jp (project TESLA—Virtual Reality as an Innovative and Immersive Learning Tools for Higher Education Institutions in Palestine).