A1 Refereed original research article in a scientific journal
INSPIRE: INvestigating Stellar Population In RElics – VII. The local environment of ultra-compact massive galaxies
Authors: Scognamiglio, Diana; Spiniello, Chiara; Radovich, Mario; Tortora, Crescenzo; Napolitano, Nicola R; Li, Rui; Maturi, Matteo; Maksymowicz-Maciata, Michalina; Cappellari, Michele; Arnaboldi, Magda; Bevacqua, Davide; Coccato, Lodovico; D’Ago, Giuseppe; Feng, Hai-Cheng; Ferré-Mateu, Anna; Hartke, Johanna; Martín-Navarro, Ignacio; Pulsoni, Claudia
Publisher: Oxford University Press (OUP)
Publication year: 2024
Journal: Monthly Notices of the Royal Astronomical Society
Journal name in source: Monthly Notices of the Royal Astronomical Society
Volume: 534
Issue: 2
First page : 159
Last page: 1608
ISSN: 0035-8711
eISSN: 1365-2966
DOI: https://doi.org/10.1093/mnras/stae2185
Web address : http://doi.org/10.1093/mnras/stae2185
Self-archived copy’s web address: https://research.utu.fi/converis/portal/detail/Publication/458655615
Preprint address: https://arxiv.org/abs/2409.12288
Relic galaxies, the oldest ultra-compact massive galaxies (UCMGs), contain almost exclusively 'pristine' stars formed during an intense star formation (SF) burst at high redshift. As such, they allow us to study in detail the early mechanism of galaxy assembly in the Universe. Using the largest catalogue of spectroscopically confirmed UCMGs for which a degree of relicness (DoR) had been estimated, the INSPIRE catalogue, we investigate whether or not relics prefer dense environments. The objective of this study is to determine if the DoR, which measures how extreme the SF history was, and the surrounding environment are correlated. In order to achieve this goal, we employ the AMICO galaxy cluster catalogue to compute the probability for a galaxy to be a member of a cluster, and measure the local density around each UCMG using machine learning-based photometric redshifts. We find that UCMGs can reside both in clusters and in the field, but objects with very low DoR (<0.3<0.3, i.e. a relatively extended SF history) prefer underdense environments. We additionally report a correlation between the DoR and the distance from the cluster centre: more extreme relics, when located in clusters, tend to occupy the more central regions of them. We finally outline potential evolution scenarios for UCMGs at different DoR to reconcile their presence in both clusters and field environments.
Downloadable publication This is an electronic reprint of the original article. |