O2 Muu julkaisu

On Low Complexity Colorings of Grids




TekijätKari, Jarkko

ToimittajaKrálovič, Rastislav; Kučera, Antonin

Konferenssin vakiintunut nimiMathematical Foundations of Computer Science (MFCS)

KustantajaSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

Julkaisuvuosi2024

JournalLIPICS – Leibniz international proceedings in informatics

Kokoomateoksen nimi49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)

Tietokannassa oleva lehden nimiLeibniz International Proceedings in Informatics, LIPIcs

Sarjan nimiLIPICS – Leibniz international proceedings in informatics

Vuosikerta306

ISBN978-3-95977-335-5

eISSN1868-8969

DOIhttps://doi.org/10.4230/LIPIcs.MFCS.2024.3

Verkko-osoitehttps://doi.org/10.4230/LIPIcs.MFCS.2024.3

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/458652210


Tiivistelmä
A d-dimensional configuration is a coloring of the infinite grid Zd using a finite number of colors. For a finite subset D ⊆ Zd, the D-patterns of a configuration are the patterns of shape D that appear in the configuration. A configuration is said to be admitted by these patterns. The number of distinct D-patterns in a configuration is a natural measure of its complexity. We focus on low complexity configurations, where the number of distinct D-patterns is at most |D|, the size of the shape. This framework includes the notorious open Nivat’s conjecture and the recently solved Periodic Tiling problem. We use algebraic tools to study the periodicity of low complexity configurations. In the two-dimensional case, if D ⊆ Z2 is a rectangle or any convex shape, we establish an algorithm to determine if a given collection of |D| patterns admits any configuration. This is based on the fact that if the given patterns admit a configuration, then they admit a periodic configuration. We also demonstrate that a two-dimensional low complexity configuration must be periodic if it originates from the well-known Ledrappier subshift or from several other algebraically defined subshifts.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
Academy of Finland project 354965


Last updated on 2025-27-01 at 19:37