A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Ocular Disease Classification Using CNN with Deep Convolutional Generative Adversarial Network




TekijätKunwar, Arun; Pant, Dibakar Raj; Skön, Jukka-Pekka; Heikkonen, Jukka; Turjamaa, Riitta; Kanth, Rajeev

ToimittajaPark, Ji Su; Yang, Laurence T.; Pan, Yi; Park, James J.

Konferenssin vakiintunut nimiInternational Conference on Computer Science and its Applications and the International Conference on Ubiquitous Information Technologies and Applications

KustantajaSpringer Nature Singapore

Julkaisuvuosi2024

JournalLecture Notes in Electrical Engineering

Kokoomateoksen nimiAdvances in Computer Science and Ubiquitous Computing: Proceedings of CUTE/CSA 2023

Vuosikerta1190

Aloitussivu74

Lopetussivu82

ISBN978-981-97-2446-8

eISBN978-981-97-2447-5

ISSN1876-1100

eISSN1876-1119

DOIhttps://doi.org/10.1007/978-981-97-2447-5_13

Verkko-osoitehttp://dx.doi.org/10.1007/978-981-97-2447-5_13

Preprintin osoitehttps://arxiv.org/abs/2502.10334


Tiivistelmä

The Convolutional Neural Network (CNN) has shown promising performance in image classification because of its robust learning potentialities. However, it demands a substantial and balanced dataset for effective training. Otherwise, networks frequently exhibit overfitting and struggle to generalize to new examples. A publicly available dataset of fundus images of ocular disease is insufficient to train any classification model to achieve satisfactory accuracy. So, we propose a Generative adversarial Network (GAN) based data generation technique to synthesize a dataset for training a CNN-based classification model and later use the original disease containing ocular images to test the classification accuracy. During testing the model classification accuracy with the original ocular image, the proposed method attained an accuracy rate of 78.6% for myopia, 88.6% for glaucoma, and 84.6% for cataracts, with an overall average classification accuracy of 84.6%.



Last updated on 2025-26-06 at 12:01